Gibbs Sampling

Carlo Hämäläinen
carlo.hamalainen@gmail.com

November 18, 2009

This file and related Sage source code is available at http://carlo-hamalainen. net/stuff/gibbs

Suppose that X and Y are two random variables. The Gibbs sampling algorithm gives us a way to sample from $f(x)$ by sampling from the conditional distributions $f(x \mid y)$ and $f(y \mid x)$. In statistical models we often know the conditional distribution while the marginal distribution $f(x)$ is difficult to compute.

In Gibbs sampling we generate a series of random variables

$$
Y_{0}^{\prime}, X_{0}^{\prime}, Y_{1}^{\prime}, X_{1}^{\prime}, Y_{2}^{\prime}, X_{2}^{\prime}, \ldots Y_{k}^{\prime}, X_{k}^{\prime}
$$

where $Y_{0}^{\prime}=y_{0}$ is fixed and the rest of the variables are sampled according to

$$
\begin{aligned}
X_{j}^{\prime} & \sim f\left(x \mid Y_{j}^{\prime}=y_{j}^{\prime}\right) \\
Y_{j+1}^{\prime} & \sim f\left(y \mid X_{j}^{\prime}=x_{j}^{\prime}\right) .
\end{aligned}
$$

If k is large enough then X_{k}^{\prime} will effectively be a sample from the marginal distribution $f(x)$.

We can work through the two variable case with an explicit example, following [1]. Let X and Y each be (marginally) Bernoulli random variables with joint distribution as follows:

	$X=0$	$X=1$
$Y=0$	p_{1}	p_{2}
$Y=1$	p_{3}	p_{4}

where $0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$. Using this table we can calculate the conditional distributions. For example,

$$
P(X=1 \mid Y=1)=\frac{P(X=1 \text { and } Y=1)}{P(Y=1)}=p_{4} /\left(p_{3}+p_{4}\right)
$$

The matrix $A_{y \mid x}$ gives the conditional probability of Y given $X=x$:

$$
A_{y \mid x}=\left(\begin{array}{cc}
\frac{p_{1}}{\left(p_{1}+p_{3}\right)} & \frac{p_{3}}{\left(p_{1}+p_{3}\right)} \\
\frac{p_{2}}{\left(p_{2}+p_{4}\right)} & \frac{p_{4}}{\left(p_{2}+p_{4}\right)}
\end{array}\right)
$$

The matrix $A_{x \mid y}$ gives the conditional probability of X given $Y=y$:

$$
A_{x \mid y}=\left(\begin{array}{cc}
\frac{p_{1}}{\left(p_{1}+p_{2}\right)} & \frac{p_{2}}{\left(p_{1}+p_{2}\right)} \\
\frac{p_{3}}{\left(p_{3}+p_{4}\right)} & \frac{p_{4}}{\left(p_{3}+p_{4}\right)}
\end{array}\right)
$$

The transition $X_{0}^{\prime} \rightarrow Y_{1}^{\prime} \rightarrow X_{1}^{\prime}$ has probability

$$
P\left(X_{1}^{\prime}=x_{1} \mid X_{0}^{\prime}=x_{0}\right)=\sum_{y} P\left(X_{1}^{\prime}=x_{1} \mid Y_{1}^{\prime}=y\right) P\left(Y_{1}^{\prime}=y \mid X_{0}^{\prime}=x_{0}\right)
$$

So the matrix $A_{x \mid x}$ describing the transitions $X_{0}^{\prime} \rightarrow X_{1}^{\prime}$ is

We now have a Markov chain with two states, 0 and 1 , and transition probabilities given by the matrix A. Note that $A_{0,0}+A_{0,1}=1$ and $A_{1,0}+A_{1,1}=1$ since A is a stochastic matrix.

The stationary distribution is given by the normalised eigenvector f, where $f A=f$. For our the 2×2 case the f vector is:

$$
f=\left(\frac{\left(\frac{\left(p_{2}+p_{4}\right) p_{1}}{\left(p_{1}+p_{2}+p_{3}+p_{4}\right)}+\frac{\left(p_{2}+p_{4}\right) p_{3}}{\left(p_{1}+p_{2}+p_{3}+p_{4}\right)}\right)}{\left(p_{2}+p_{4}\right)} \frac{\left(p_{2}+p_{4}\right)}{\left(p_{1}+p_{2}+p_{3}+p_{4}\right)}\right)
$$

Observe that f is undefined if $p_{2}+p_{4}=0$. In terms of the original joint distribution, this means that there is zero probability of reaching a state $(1, Y)$ for any Y. So this case is in some sense degenerate.

For an explicit example, set

$$
\begin{aligned}
& p_{1}=0.26275562241164158 \\
& p_{2}=0.6960509654605056 \\
& p_{3}=0.025834046671036285 \\
& p_{4}=0.015359365456816687
\end{aligned}
$$

Then

$$
A=\left(\begin{array}{ll}
0.305652971862979 & 0.694347028137022 \\
0.281667794759494 & 0.718332205240506
\end{array}\right)
$$

and

$$
f=\left(\begin{array}{ll}
0.288589669082678 & 0.711410330917322
\end{array}\right)
$$

The error in the stationary distribution of $X=1$ is given in the following plot:

With the same matrices, we can also compare the error in the $X=1$ stationary probability, starting from an initial distribution of $f_{0}=\left[\begin{array}{ll}0.5 & 0.5\end{array}\right]$:

References

[1] George Casella and Edward I. George. Explaining the gibbs sampler. The American Statistician, 46(3):167-174, 1992. (document)

