CS 141 Introduction to Al Greenwald

Lecture 21-22: Reinforcement Learning
TBA

Contents

[_Overviewl 1

1 Overview

In this lecture, we continue our study of Markov reward and decision processes, shifting our emphasis
from dynamic programming (which has its foundations in operations research) to reinforcement
learning (which is true AI). Reinforcement learning is more generally applicable than dynamic
programming, since (i) it does not require sweeps over the entire state space and (ii) it does not
depend on the assumption that the probabilistic nature of the environment as well as the reward
structure are known. In this lecture, we compute state and action value functions using only agents’
trial-and-error “experiences.” The algorithms we study, Monte Carlo simulations, TD-learning, Q-
learning and SARSA, incrementally estimate state and action values from sample trajectories.

2 Incremental Estimation

One plausible estimate of an unknown quantity is simply the average value, say A, of k& measure-
ments, say zi,...,2r. Given A and the k + 1st measurement, rather than recompute the sum of
the first k measurements, add the value of the &+ 1st measurement, and divide by k+ 1, we update

CS 141 Lecture 21-22: Reinforcement Learning TBA

Ap.y1 incrementally as follows:

k
1
A = —>
k+1 k1 Z Zt4+1

k—1
Zk+1 T Z Zt+1‘|

K+l ar

1
= — kA A, — A
k,+1[zk+1+ g+ Ar — Ay

1
= T (241 + (B + 1) A — Ag]

[2k+1 — Ag] (1)

k 1
PR R 2)

That is, the new estimate Ay, depends in part on the old estimate Aj, and in part on the k£ + 1st
measurement.

More generally, the value of the k + 1st measurement zxy; in Equation [Il can be replaced by an
arbitrary “target” value A. Similarly, the fraction 1/(k + 1), which decreases with the number of
measurements, can be generalized by a function 0 < aj < 1 that decays with time ¢, in which case
k/(k + 1) is replaced by 1 — ay.

In the following equations, the new estimate A1 depends in part on the old estimate Aj and in
part on the target A, where “in part” is quantified by ay:

A1 = (1 —oap)Ap + A (3)

= Ap+ap[A— A (4)

Equation Bl generalizes Equation B} Equation Bl generalizes Equation I The reinforcement learning
update rules we study are all instances of Equation Hl

3 Learning State Values

Effective techniques for learning state-value functions (e.g., policy evaluation) include Monte Carlo
policy evaluation and TD-learning. At a high-level, these methods learn state values in an MDP
by repeatedly sampling trajectories, and averaging their rewards.

3.1 Monte Carlo Policy Evaluation

Recall that the value V' (s;) of state s; is defined as the expected reward that is accrued from time
t on; that is, the expected value of pj, where pj is the reward that is accrued along trajectory

T = (St St41, St425 - - -):

V(se) =) PIr|sdp] (5)

Given policy 7, Monte Carlo policy evaluation repeatedly generates state trajectories T according
to m and computes V7™ (s;) via Equation B, setting the target value A = p] whenever trajectory 7

CS 141 Lecture 21-22: Reinforcement Learning TBA

is traversed, as follows:
V7(st) — V7T(st) + arlp; — V7 (sy)] (6)

This technique depends on the computation of p] = ry+7ry1+7?ri12 Thus, it is only applicable
if there exists ¢ > t s.t. for all t”” > ¢/, ry» = 0. Given an MDP, an absorbing (or terminal) state, is
one at which reward is zero and from which it is impossible to depart. In particular, if an absorbing
state is reached at time ¢/, then for all ¢ > t/, r;» = 0. A policy is called proper iff all trajectories
it engenders eventually lead to an absorbing state, with probability 1. Assuming the policy « is
proper, Monte Carlo policy evaluation simulates episodes, beginning at a random start state and
leading to an absorbing state (with probability 1). Note that for such episodes it is well-defined to
simply let p] be the sum of future rewards (i.e., v = 1).

MC_ EVALUATION(MDP, 7,)
Inputs policy w
discount factor
Output value function V7™
Initialize V =0, a according to schedule

repeat
1. initialize s, 7, p

2. while s ¢ T do

3. forall s e, V(s) =V(s)+ alp(s) — V(s)]

4. decay « according to schedule

forever

Table 1: Monte Carlo Method for Prediction, assuming v = 1.

In the pseudocode given in Table [, the values of the states that are visited during an episode are
updated by letting R; be the value of the returns following the first visit to state s. A variant of
this approach instead lets R; be the average value of the returns following every visit to state s.
Both methods converge to V7 (s) as the number of visits to state s approaches infinity.

3.2 TD-Learning

TD-learning iteratively computes V7 (s;) via the following instantiation of Eq. Bk
V™ (st) «— V™ (s) + aglre + YV (s141) — V7 (s¢)] (7)

Here the target value A = r; + vV ™ (s441). The difference between A and the current estimate
V7™(sy) is called the temporal difference. Unlike Monte Carlo methods, which set the target

CS 141 Lecture 21-22: Reinforcement Learning TBA

value according to the returns achieved upon termination of a trajectory, TD-learning—inspired
by Bellman’s theorem—updates based on intermediate rewards. For this reason, TD-learning does
not rely on the assumption that the policy 7 is proper.

TD_ LEARNING(MDP, 7,)
Inputs policy w
discount factor ~
Output value function V7™
Initialize V =0, « according to schedule

repeat
1. initialize s
2. while s ¢ T do

(a) take action a = 7(s)
(

)
)
(c) Vi(s) =V(s)+a[r+V(s) = V(s)]
(d) let s =45

observe reward r and next state s’

3. decay « according to schedule

forever

Table 2: TD-Learning.

Given policy 7, Monte Carlo simulations and TD-learning are both guaranteed to converge to V™
if the learning rate oy, decreases over time (fixed values such as 0.1 are often used in practice). TD
typically converges faster, because it makes use of intermediate estimates, whereas Monte Carlo
simulation methods update based on the final return.

3.3 Example: Gambler’s Ruin

We now compare the behavior of the Monte Carlo method and TD-learning on several sample
trajectories in the Gambler’s Ruin, for fixed o = 0.1 and v = 1.

CS 141 Lecture 21-22: Reinforcement Learning TBA

‘ Trajectory ‘ Monte Carlo ‘ TD-learning ‘
4 V4)=0+.11-0=.1 V(4)=0+.114+0-0] =
3—4 V(3)=0+. 1[1—0]:.1 V(3)=0+. 1[0+ 1-0]=.01

V(4 A1 —.1] = .19 V4 A1+0-.1]=.19
2—-3—-4 V(2)=0+. 1[1—0] V(2)=0+. 1[0+01—0]—001

<

(3) (3)

(4) = (4) =

(2) (2)

(3) = [1—1] 19 V(3) = .01+ .1[0 + .19 — .01] = .028
V(4) =19+ .1[1-.19] = .271 | V(4) = .19+ 1[1 + 0 — .19] = .271

(3) = 3) =

(2) = (2) =

(1) (1) =

(0) (0)

3525150 V(@) =.19+.1[0—.19] = .171 | V(3) = .028 + .10 + .001 — .028] = .0253
1% 100 —.1] = .09 V(2) = .001 + .1[0 + 0 — .001] = .0009
V(1) = [—0]:0 V(1) =0+.1[0+0-0] =0
=0+.10-0] =0 V(0)=0+.1[0+0-0] =0

2
1
0

<

4 Learning Action Values

We now turn our attention to algorithms that learn action-value functions, from which we can
derive optimal policies. Following the structure of the previous section, we present one Monte-Carlo
based learning algorithm for control, and another, called SARSA, which is based on TD-learning.
We also present a third algorithm, ()-learning, that uses an update equation inspired by Bellman’s
optimality equations. But before presenting any reinforcement learning algorithms for control, we
revisit the issue of exploration vs. exploitation, which arises again in this application domain.

4.1 Exploration vs. Exploitation

Recall that in the reinforcement learning framework it is not assumed that the probabilistic nature
of the environment is known. Moreover, it is also not assumed that the reward structure is known.
Instead, reinforcement learning agents wander through their environments learning about rewards
only at the states they visit for the actions they employ.

Naturally, such agents would aim to reinforce, that is “become more and more likely to employ,”
those actions that are found to be the most rewarding. With this objective in mind, reinforce-
ment learning agents are susceptible to the trade-offs between exploration and exploitation (as in
simulated annealing) while learning action values. By exploiting actions that have been proven
themselves to be successful in the past, it is possible to perform well; but by exploring alternative
actions, it is possible to perform even better.

One popular method of exploration is e-greedy: if 7 is the current optimal policy and s is the current
state, with probability 1 — €, exploit—take action m(s)—but with probability €, explore—choose
an action at random. Typically, € is decayed over time (e.g., € ~ 1/t). This technique, however,
explores seemingly optimal and sub-optimal actions with equal probability.

An alternative is to use the softmax action selection method, which relies on the Boltzmann

CS 141 Lecture 21-22: Reinforcement Learning TBA

distribution. Specifically, given state s;, action a is selected with the following probability:

Qs1,0)/T
S Q)T

where the temperature parameter 7' gradually decreases (as in simulated annealing). All actions
are nearly equiprobable at initial higher temperatures; in contrast, lower temperatures extol the
virtues of some actions but belittle others.

4.2 Monte Carlo Control

Recall that policy iteration alternates between improving the current policy to arrive at a new
policy, and then evaluating that new policy. To extend Monte Carlo evaluation to control, it
suffices to insert improvement steps between the repeated evaluation steps (see Table B).

Note that no Monte Carlo control algorithm can converge to a suboptimal policy. If it were to do
so, then the value function corresponding to that policy would eventually be learned (via Monte
Carlo evaluation), at which point it would be determined that alternative actions are preferable.
Convergence requires both the policy and the value function to be optimal.

MC_ CONTROL(MDP, 7,7, €)
Inputs policy w
discount factor
rate of exploration €
Output value function V7™
Initialize V =0, « according to schedule

repeat
1. initialize s,a, 7, p
2. while s ¢ T do

(a) let T=7U{(s,a)}

(b) take action a = 7(s) with probability 1 — €
take random action a with probability €

(c) observe reward r and next state s’

(d) for all (s,a) € 7, let p(s,a) = p(s,a) +r

(e) let s=¢,a=d
3. for all (s,0) € 7, Q(s,0) = Q(5,) + alp(s,a) — Q(5,0)]
4. for all s € S, 7(s) € argmax, Q(s,a)

5. decay « according to schedule

forever

Table 3: Monte Carlo Method for Control, assuming v = 1.

CS 141 Lecture 21-22: Reinforcement Learning TBA

4.3 SARSA

Just as Monte Carlo control is a control algorithm that generalizes Monte Carlo evaluation, SARSA
(see Table |l is a control algorithm that generalizes TD-learning. SARSA updates not just on the
trajectory (s¢, 7, S¢+1), but rather on the trajectory (s¢, as,rt, St+1,a14+1). More specifically, given
state-action pair (s, a;), SARSA simulates the action a; in state s; to obtain the reward r; and
transition to state s;y1. The algorithm then uses its current optimal policy—based on the current
@ values—to generate its next action a;+; (but with probability € it chooses an action at random).
At this point, SARSA updates Q(s;, a;) as follows:

Q(st,ar) — Q(st, ar) + aglre + vQ(s141, arv1) — Q(se, ar)] (8)
This update rule is based on the following variant of Bellman’s optimality equations:
Q" (s, ar) = R(sy, ar) + VE[Q™(8¢41, 7 (8141))] (9)

where
T (st) € arg max Q*(st+1,0) (10)

SARSA(MDP, v, ¢)
Inputs discount factor
rate of exploration €
Output action-value function Q*
Initialize @ = 0, random 7, a according to schedule

repeat
1. initialize s,a
2. while s ¢ T do
(a) take action a

(b) observe reward r and next state s’

(¢) choose random action a’, with probability e
choose action @’ = 7(s"), with probability 1 — €

(d) Q(s,a) =Q(s,a) + afr +7Q(s', a') — Q(s,a)]
(e) 7(s) € argmax,r Q(s,a’”)

(f) s=s,a=d

3. decay « according to schedule

forever

Table 4: SARSA: On-policy Reinforcement Learning.

CS 141 Lecture 21-22: Reinforcement Learning TBA

4.4 (-Learning

Whereas TD-learning is an application of Bellman’s theorem for V', Q-learning is based on Bellman’s
optimality equations for Q:

Q*(3t7at) = R(St7at) +7E[méj‘x Q*(st-i-l?a)] (11)
The corresponding update rule is the basis for Q-learning (see Table H):
Q(st,ar) — Q(s1,ar) + aglry +ymax Q(sir1,a) — Q(se, ar)] (12)

SARSA is an on-policy reinforcement learning algorithm, which means that the algorithm learns a
policy while simultaneously following that policy (or a close approximation thereof). In contrast,
Q-learning is an off-policy reinforcement learning algorithm. The policy Q-learning follows while
learning need not bear any resemblance to the policy the algorithm is following. Because it learns
off-policy, the rate of exploration input to @Q-learning (or any off-policy algorithm) can greatly
exceed that which is input to SARSA (or any on-policy algorithm) leading to faster convergence.
But (Q-learning is not prevented from taking actions that are on-policy; doing so leads to behavior
that is closely related to that of SARSA.

Q_ LEARNING(MDP, v, €)
Inputs discount factor
rate of exploration €
Output action-value function Q*
Initialize @ = 0, a according to schedule

repeat
1. initialize s,a
2. while s ¢ T do

take action a
b

(a)
(b)
(¢) Q(s,a) = Q(s,a) + a[r + ymaxy Q(s',a’) — Q(s,a)]
(d)
)

observe reward r and next state s’

d

(e) s=s,a=d

choose action a’

3. decay « according to schedule

forever

Table 5: @Q-Learning: Off-policy reinforcement learning.

4.5 Example: Deterministic Maze

In case of deterministic environments, the update rules for Q-learning and SARSA simplify as follows:

Q(st,at) — 11 +7Q(St+1, ar41) (13)
Q(s¢,a¢) < 14 + ymaxy Q(s¢41,a) (14)

CS 141 Lecture 21-22: Reinforcement Learning TBA

Figure[ldepicts a deterministic maze. Possible moves are indicated by arrows. The final (absorbing)
state is F'; upon transitioning into state F, a reward of 100 is obtained. All other rewards are zero.
Let v =0.9.

K]
\
v

O

O
—t =

| 100

Kl
|
Kl

> 4
o

D

Figure 1: Deterministic Maze.

Value Iteration

Qe [T+ [w[d] [V0]
A | |81 |8l Al sl
B 0|90 |9 | B| 90
C | —]9 | —]o0 Cl 9
D [0|— |100]— D | 100
E |[o|w0] —|o0 E| 100
(@[1] xr [ufd] [V()]
A — | 81 | 81 | — Al 81
B 73190 | 90 | — Bl 90
c |—[9 | — |73 Cl 9
D |8 | — |100|— D | 100
E|s1|100]| — |81 E| 100
-Learning
‘ Trajectory ‘ Q-Learning ‘
D—F Q(D,u) = 100 + .9max, Q(F,a) = 100
E—-F QE,x) = 100 + 9max, Q(F,a) = 100
C—-E—F Q(Cr) = 0+ 9max, Q(E,a) = 90
A—-C—-E—-F Q(Aun) = 0+ 9max,Q(C,a) = 81
B—-A—-C—E—-F QB,)) = 0+ 9max,Q(A,a) = 73
D-B—-A—-C—-E—-F|QD]l = 0+ 9max,Q(B,a) = 66
E—-B—-D—=F QByx) = 0+ 9max,Q(D,a) = 90
Q(E,d) = 0+ .9max,Q(B,a) = 81

CS 141 Lecture 21-22: Reinforcement Learning TBA

SARSA

‘ Trajectory ‘ Q-Learning ‘
D—F QD,u) = 100+ 9Q(F,q) = 100
E—-F QEyxr) = 100+ 9Q(F,q) = 100
C—E—-F Q(Cr) = 0+ .9Q(Er) = 90
A-C—oE-—=F Q(Au) = 0+ .9Q(Cyr) = 381
B—-A—-C—E-—=F Q(B,l) = 0+ QQ(A,U) = 73
D—-B—-A—-C—-E—->F|QD]l = 0+.9Q(B)) = 66
E—-B—-D-—=F QByr) = 0+ .9Q(D,u) = 90

QEd) = 0+ .9QBr) = 8l

10

	Overview
	Incremental Estimation
	Learning State Values
	Monte Carlo Policy Evaluation
	TD-Learning
	Example: Gambler's Ruin

	Learning Action Values
	Exploration vs. Exploitation
	Monte Carlo Control
	SARSA
	Q-Learning
	Example: Deterministic Maze

