
THE DISSECTION OF RECTANGLES INTO SQUARES

BY R. L. BROOKS, C. A. B. SMITH, A. H. STONE AND W. T. TUTTE

Introduction. We consider the problem of dividing a rectangle into a finite
number of non-overlapping squares, no two of which are equal. A dissection of
a rectangle R into a finite number n of non-overlapping squares is called a squar-
ing of R of order n; and the n squares are the elements of the dissection. The
term "elements" is also used for the lengths of the sides of the elements. If
there is more than one element and the elements are all unequal, the squaring is
called perfect, and R is a perfect rectangle. (We use R to denote both a rectangle
and a particular squaring of it.) Examples of perfect rectangles have been
published in the literature.
Our main results are"

Every squared rectangle has commensurable sides and elements. (This is
(2.14) belov.)

Conversely, every rectangle with commensurable sides is perfectible in an
infinity of essentially different ways. (This is (9.45) below.) (Added in proof.
Another proof of this theorem has since been published by R. Sprague: Jour-
nal fiir Mathematik, vol. 182(1940), pp. 60-64; Mathematische Zeitschrift,
vol. 46(1940), pp. 460-471.)

In particular, we give in 8.3 a perfect dissection of a square into 26 elements.
There are no perfect rectangles of order less than 9, and exactly two of order

9. (This is (5.23) below.)
The first theorem mentioned is due to Dehn, who remarked that the diffi-

culty of the problem is the semi-topological one of characterizing how the ele-
ments fit together. This is overcome here in 1 by associating a certain linear
graph (the "normal polar net") with each "oriented" squared rectangle. The
metrical properties of the squared rectangle are found to be determined by
certain flow of electric current through this network. Accordingly, in 2 we
collect the relevant results from the theory of electrical networks. In particular,
the elements of the squared rectangle can be calculated from determinants
formed from the incidence matrix of the network. In 3, the elements are
expressed in a different way, in terms of the subtrees of the network. This leads

Received May 7, 1940. We are indebted to Dr. B. McMillan, of Princeton University,
for help with the diagrams.

A bibliography is given at the end of this paper. Numbers in square brackets refer
to this bibliography.

Cf. [6], p. 319.
This disproves a conjecture of Lusin; of. [10], p. 272. For an independent example of

a perfect square (published while this paper was in preparation) see [13].
Partly confirming and partly disproving a conjecture of Toepken (see [18]).
[12], p. 402.
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to some relations between determinants and the subtrees of a network, and to
some duality theorems. In 4, these duality theorems are applied to prove
the converse of 1: that to any "polar net" corresponds a squared rectangle;
and moreover, it is shown that (roughly speaking) the networks which corre-
spond to the same squared rectangle in its two orientations are dual. In 5,
the polar net is used to determine all the squared rectangles of a given order; in
pa.rticular, the "simple" perfect rectangles of orders <12 are tabulated. 6
contains some theorems on the factorization properties of the elements of a
squared rectangle, as determined in 2; as corollaries, we have some sufficient
conditions for a squared rectangle to be perfect ((6.20), (6.21)). In 7, we give
"non-uniqueness" constructions--in 7.1, of rectangles which can be dissected
into the same elements in essentially different ways, and, in 7.2, of pairs of
squared rectangles having the same shape but different elements. These con-
structions depend mostly on considerations of symmetry or duality in the corre-
sponding networks. In 8, the results of 7.2 are used to give "perfect" squares;
and in 9, a whole family of "totally different" perfect squares is worked out,
and this leads to the result that every rectangle whose sides are commensur-
able is perfectible.
We conclude (10) by outlining some generalizations--notably "rectangled

rectangles", squared cylinders and tori, "triangulated" equilateral triangles,
and "cubed cubes". We prove in. particular that no "perfect" dissection of a
rectangular parallelopiped into cubes is possible.

1. The net associated with a squared rectangle

1.1. In any squaring of a rectangle R, the sides of all the elements and of R
will clearly be parallel to two perpendicular lines. We orient R by choosing
one of these lines to be "horizontal" (i.e., parallel to the x-axis). The distinction
between this configuration, and its reflections in the coSrdinate axes, is unim-
portant; but it is convenient to distinguish it from R in the other orientation
(obtained by rotating R through an angle of 1/2), called the conjugate of R.

Consider the point-set formed by the horizontal sides of the elements of R.
Its connected components will be horizontal line-segments (each consisting
of a set of horizontal sides of elements of R); enumerate them as pl, pN,

say, where pl, p are the upper and lower edges of R. Take N points
P, PN in the plane. Let E be an element of R;its upper edge will lie in
some one of p, p, say p :similarly, its lower edge will lie in p- (i j).
Join the points P, P. by a line (simple arc) e. By taking all elements E of R,
we get a network (linear graph) on P1, P as vertices and the e’s as 1-cells.
Figure 1 provides an example.
The points P, PN are the poles of the network. We can arrange the joins e

in such a way that

Answering a question raised by Chowla in [5].
Throughout, all squares are supposed to have positive sides; thus zero elements are

excluded.
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(1.11) the network is realizable in a plane with no two 1-cells intersecting (except
at a vertex).
(1.12) No circuit encloses a pole.

For we can realize the network as follows. Take P to be the mid-point of p
and take e > 0 sufficiently small. For each element E, take the vertical seg-
ment which bisects E and cut off a length e from each end, leaving a segment
AB, say. Join the upper end of AB, A, to the P corresponding to the upper
boundary of E, by a straight line-segment, and similarly join B to P. corre-
sponding to the lower edge of E. The path PABP is defined to be e. It is
now easily verified that (1.11) and (1.12) hold.

FI. 1

Also we have clearly

(1.13) The network is connected.

RemarIc. In general there may be several 1-cells joining two vertices, though
not if the squaring is perfect.

(1.14) DEFINITIONS. A network with more than one vertex, satisfying (1.11)
and (1.13), is called a net. If two of the vertices of a net are assigned as "poles",
and (1.12) is satisfied, the net is a polar net (p-net). The network constructed
above is the normal polar net of the squared rectangle.

1.2. Kirchhoffs laws. With each 1-cell e PP of our normal p-net, asso-
ciate the length of the side of the corresponding element E, directed from the
"upper" point (P) to the "lower" point (P.); call this the current in e. Then

(1.21) Except at the poles, the total current flowing into P is zero.
(For current flowing in length of p current flowing out.)
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(1.22) The algebraic sum of the currents round any circuit is zero.
(For the current in a "wire" e PPi is the vertical height of p above p..)

(1.23) The sum of the currents flowing into P1 length of horizontal side of R
sum of the currents flowing out of P.
(1.21) and (1.22) are the usual Kirchhoff laws for a flow of electric current in
the net from P1 to Pn, it being assumed that each 1-cell is a wire of unit con-
ductance.

["Rectangulations" of rectangles can be dealt with similarly; the conductance
of e will then be the ratio of the sides of E.]

Equations (1.21) and (1.22) can be interpreted differently. Consider the
cellular 2-complex formed by embedding our p-net in a 2-sphere. We have on it
a Kirchhofl chain (K-chain), viz., the 1-chain 2 (current in e).e. Then

(1.24) The K-chain is a cycle modulo its poles. (This - (1.21).)
(1.25) The K-chain is an absolute cocycle. (This - (1.22).)

2. Some results from the electrical theory of networks

2.1. In the previous section, we reduced the study of squared rectangles to
the study of certain flows of electricity in networks. Here we collect the results
on electrical networks in general which will be useful later.

Let be a connected network whose vertices are P1, P (N >_- 2).
The 1-cells are called wires; there may be more than .one wire joining two
vertices, and there may be wires whose two ends coincide. With each wire is
associated a positive real number, its conductance. We define a matrix cr}
as follows:

(2.11) If r s,
/sum of conductances of all wires joining Pr, P,
\0 if there are no such wires;
sum of conductances of all wires joining Pr to other vertices.

Ors

err

Thus

Cr Csr Z Crs 0.

We make the convention that if ej is explicitly called a net, all its conduc-
tances are 1. (The matrix {-cl is then the product of the usual incidence
matrix of the oriented network, with its transpose.)

Let us return to the general case; from (2.12) we can readily show that all
first cofactors of {Cry} are equal. We cll their common value the complexity
of the network, and denote it by C. It is known that C > 0. (An independent
proof is given below; see (3.14).)
The second cofactor obtained by taking the cofactor of the component cu in

the cofactor of Cr (r s, u) is denoted by [rs, tu]. (If N 2, [12, 12]
1 -[21, 12].) We put [rr, tu] 0 Its, tt]. The Its, tu]’s are called the trans-
pedances (generalized transfer impedances) of
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Consider a flow of current from P to Py (the poles). The currents in the wires
satisfy (1.21); the potential differences (P.D.’s) satisfy the analogue of (1.22);
and the total current I is given by (1.23). It is known that these conditions
(with Ohm’s Law) determine the flow uniquely when I is given, and that

(2.13) ,P.D. from P to P when current I enters at P and leaves at Py is
[xy, rs]. I/C.

It is convenient to take I C, thus fixing the values of the currents and P.D.’s
of the network. The flow with I C is called the full flow; and we speak
of the "full currents", etc.

Applying this to the normal p-net of a squared rectangle, where all conduc-
tances are 1, so that all the transpedances are integers, we see from (1.21)-(1.23)
and (2.13) that

(2.14) Every squared rectangle has commensurable sides and elements.

The H.C.F. of the full currents of a p-net is the reduction p of the p-net.
Notice that p is also the H.C.F. of all the full P.D.’s of the p-net. The flow
with I C/p is the reduced flow.

2.2. Properties of the transpedances. We have

(2.21) [rs, tu] [tu, rs] -[sr, tu],

(2.22) ct.[rs, tx] C. (6t8 6tr),

(2.23) [rs, tu] + [rs, uv] [rs, tv].

(2.22) and (2.23) verify that (2.13) does in fact provide a solution of the
Kirchhoff equations, and that the current at each pole is C.
We call [rs, rs] the impedance of r, s, and write it V(rs). Then

(2.24) V(rs) V(sr), V(rr) O,

(2.25) 2.[rs, tu] V(ru) + V(st)- Y(su)- V(rt) (from (2.23)),

(2.26) [rs, tu] - [tr, su] - [st, ru] O.

2.3. Alterations to the network. For later use, we need to know the effect
on the transpedances of making certain alterations to the network O[.

I. Introduce a new wire joining a vertex Pm of O[ to a new vertex P0. Let
the new wire have conductance c; then, in the new network 0t:1,

C1 cC, Vl(mO) C;

(2.31) [ab, xy]l c.[ab, xy] if 0 a, b, x, y; [ab, m0]l 0;

Vl(xO) V(xm) + V(mO) c.V(xm) + C.

[8], pp. 324-331.
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These results are immediate from the definitions.
II. Identify two points P, P and ignore any wire that may have joined

them. In the new network

(2.32) C [xy, xy] V(xy) (from the definitions),

(2.33) [rs, tu] Its, tu]. V(xy) [rs, xy]. [tu,

(for these expressions satisfy Kirchhoff’s laws for O[, and agree with (2.32)).
In particular,

(2.34) V(rs) V(rs). V(xy) [rs, xy]
C

((2.33) may be generalized as follows: C divides the (n - 1)-th order deter-
minants formed as minors of the matrix of transpedances. This is an extension
of the Cauchy-Sylvester identity.9)

III. Introduce a new wire of conductance c in Ol, joining Px and P. In
the new network 03 we have, from their definitions as determinants,

C3 C - c. V(xy) C + c.C2 (from (2.32));

[rs, xy]a [rs, xy]; in particular, Va(xy) V(xy).

(2.35)

(2.36)

Also

(2.37) [rs, tu] [rs, tu] + c. [rs, tu]

for III is a combination of I and II. We introduce a new vertex P0, join it
to P by a wire of conductance c, and identify P and P0. This enables us to
verify (2.37).

3. Subtrees of a network: duality

We shall now characterize the complexity (and hence the transpedances) of a
network more topologically, in terms of the "subtrees" of the network. This
enables us to prove some duality theorems which will be useful later (4) and
are of interest in themselves.

3.1. As in the previous section, let fit be a connected network with conduct-
ances. By a subnetworl Ol of 0, we mean a network consisting of all the
vertices of 0 and some (or all) of the wires of 0. A subtree of 0[ is a sub-
network which is a "tree"; i.e., is connected and has no circuits. Enumerate
all the subtrees of ey; let Mr be the product of the conductances of the wires
of the r-th tree. Define H by:

(3.11) H Mr.

[19], p. 87.
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When a new wire of conductance c is inserted joining P, P,, let "H" for
the new network be H3; and when P, P are identified (as in 2.3, II), let
"H" become H.. Clearly,

(3.12) H3 H -- c.H
But this is the relation which holds between the complexities of these net-

works (2.35).
Also, for a connected network with only two vertices, C sum of conduct-

ances of the wires joining P1 to P H. Hence, by induction on the numbers
of vertices and wires in ej, we have "1

(3.13) THEOREM. For any connected networ] with more than one vertex, having
conductadces assigned to the ]-cells, C H.

If the conductances are all positive, we clearly have H > 0. This proves

(3.14) C > 0.

This interpretation of conplexity in terms of trees enables us, if (2.32) is used,
to express V(xy) in terms of the trees of networks formed from by identifying
certain pairs of its vertices, tnd hence in terms of the "tree-pairs" of (formed
by omitting one wire from a subtree). Hence, using (2.25), we can get similar
interpretations for all the transpedances.

In the case of a net, all conductances are 1, so H number of subtrees of
thus (3.13) gives an explicit formula for the number of subtrees of any con-
nected network, in terms of the incidences of the network.

3.2. Duality relations. Now suppose that e3 can be imbedded in a 2-sphere,
and let * be its dual on the sphere. The conductivity of a wire of e3[* is de-
fined to be the reciprocal of that of the dual wire of ,o. Thus 6j** , and
the dual of a net is a net. The codual of a subnetwork of r is the sub-
network of ,6). whose 1-cells are those not dual lo any wire of ). Clearly
9 9.

It can be shown that

(3.21) A subnetwork 91[ of is a tree if and o,ly if both 91 and @IF are
connected.

Hence

(3.22) If is a subtree of , then )1 is a subtree of *; and conversely.

Let M* equal the product of conductances of wires in the subtree (of
which is codual to the r-th subtree of . Let equal the product of conduct-
ances of all wires of . Then, clearly,

(3.23) M .M*.
This result is due in principle to Kirchhoff ([9], p. 497). Cf. also [3].
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Hence, using (3.22), (3.11), and (3.13), we have

(3.24) If C* is the complexity of the dual of e3, o. C* C.

In particular, we have proved

(3.25) THEOREM. Dual nets have equal complexities.

3.3. Polar duality. Let be a p-net. By (1.12), we can join the poles of
by an extra wire e0, without violating (1.11). The resulting net ( is called the
completed net (c-net) of f. Let be imbedded in a 2-sphere, and let (* be the
dual of (. From Ca* omit e0 the dual of e0, and take the ends of e0 as poles.
We get a p-net ’, the polar dual of

Clearly f?" f.
(The importance of polar duality arises from the fact that, as we shall show

in 4.3, polar dual p-nets correspond to the same squared rectangle in its two
"orientations" (1.1).)
The p-dual (polar dual) of any 1-chain on is defined in the obvious way (as,

having the same multiplicity on e as the given chain has on e).
(3.31) THEOREM. The p-dual of the full Kirchhoff chain on a p-net is the
full Kirchhoff chain on the p-dual p-net

Proof. We use $ to denote the cellular 2-complex formed by a network
e3 imbedded in a 2-sphere. F, 6 are (as usual) boundary and coboundary
operators, and * denotes duality with respect to the 2-sphere.
By (1.24), (1.25), the full K-chain on fis a cycle relative to Pa, P (the

poles of f), and an absolute cocycle on SfP. Hence, in $ (where is the com-
pleted net of 9) k’is

(i) a relative cycle mod P, P, and
(ii) a relative cocycle mod the two 2-cells, say a, a., which have incidence

with e0, the "extra" join.
Dualizing, in *, we see that * is

(i) a relative cocycle mod the 2-cells P, P* and
*(ii) relative cycle mod nd a the poles of,

But * has zero multiplicity on e0 for has zero multiplicity on e0. Hence
}* is (from (i)) a cycle on 9’ rood its poles, and (from (ii)) a cocycle on
rood the 2-cell consisting of P and P* together. But a single 2-cell cannot be
a coboundary; for, dualizing, this would require a single vertex to be a boundary.
Hence * is an absolute cocycle on ’, besides being a cycle rood its poles.
So * is a K-chain on

Let ’ be the full K-chain on 9’; thus * ].’, for some

a There may be several ways of placing e0 on the sphere, and consequently several polar
duals of (differing, however, only trivially). We suppose that one of these is chosen
arbitrarily. In the open plane, a convention will be introduced to make ’ unique; cf.
4.2, 4.3.
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Let 9 have complexity C, and V(1N) V. Let the corresponding numbers
for 9’ be C’, V’. Using (2.22) (with ct 1), we have, in ,

F() C. (P1- P).
Therefore, in $’, (*) C. (P* P*) (these cells being oriented suitably).
So

Isum of currents around F(PI in

C ! sum of currents along a path joining the end-points of e0

total P.D. between the poles of ’, in the flow }*.

Thus

(3.32) C k.W.

Similarly,

(3.33) C’ (l/k). V.

Now, by (2.35), the complexity of is C -t- V. Similarly, the complexity of
C* is C’ - V’ k. (C W V), by (3.32), (3.33). But by (3.25) these complexities
are equal. Hence/ 1, and * is the full K-chain on 9’.

4. The correspondence between p-nets and squared rectangles

4.1. We now sketch a proof showing that to each p-net corresponds a
squared rectangle. This correspondence is many-one and is clarified by in-
troducing the "normal form" of a p-net (4.2). We can then set up a 1-1
correspondence between classes of p-nets (having the same normal form) and
"oriented" .squared rectangles, and can prove that p-dual p-nets correspond
to "conjugate" squared rectangles. (Cf. 1.1.)
(4.10) LEMMA. For a K-chain in a p-net , whose poles are P1, P (suitably
numbered),
(4.11) the potential of each vertex lies between the potentials of the poles;

(4.12) no currents go into PI, or out of P;
(4.13) at a vertex P, there is an angle (in the plane) containing all ingoing cur-
rents, whose reflex contains all outgoing currents;

(4.14) on the boundary of a 2-cell of , there are two vertices P, P such that
no current round this boundary goes from P towards P.
(We make the convention that zero currents do not go in or out.)
Proof. Let P be any vertex, and suppose a current goes into P. Then

a current goes out of P along at least one wire, ending at P., say; and so on,
until we reach a pole P (say). All this time the potential has been falling,
so P is eventually reached; and the potential of P is thus not less than that
of P. If all the currents at P are zero, we can connect P to a vertex P at
which not all currents are zero, by a path of zero currents; and P, P have
the same potential. Thus in all cases the potential of P is not less than that
of P. and similarly it is not greater than that of P. This proves (4.11).
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(4.12) follows at once from (4.11).
(4.13) has been proved for the poles; so let i 1, N, and suppose that two

outgoing currents at P separate (in the plane) two ingoing ones. As in the
proof of (4.11), we can continue each of the first two wires into a path down to
P, along which the current falls; and similarly we can extend the other two
wires into paths of rising potential up to P1. Hence one of the two former
paths must intersect one of the latter again, say in P. (i j). The potential
of P. is both less than and greater than the potential of P. This is a contra-
diction, and so (4.13) is proved.

(4.14) follows from (4.13) and (4.12) by dualizing, if we use (3.31).

4.2. Normal form of a p-net. Let 9 be a p-net imbedded in the open plane
in such a way that its poles, P1, PN, can be joined in the "outside region" of
$. (That is, 9is first imbedded in the closed 2-sphere, an extra join e0 of the
poles is inserted, and the "point at infinity" is then taken to be in the 2-cell
of $9which contains e0 .) We define the normal form of 9, as so placed in the
plane, as follows:

Consider any (not identically zero) K-chain on . Some currents may
be zero; delete the corresponding wires, and delete all vertices at which all
currents are zero. Since C > 0, we are left with a p-net still, having P1, P as
poles. Using (2.31), (2.37), (2.36) (with c 1), we see that ’is a K-chain for
the new p-net t. Next take each finite 2-cell of $), and consider the vertices
on its boundary. By (4.14), the 2-cell with its boundary is homeomorphic to a
convex polygon which has one highest point and one lowest point, and in which
the potentials of the vertices increase with their heights. Moreover, they
increase strictly; for now no currents are zero. Hence equipotential vertices
on this boundary occur at most in pairs, which can all be respectively identified
by a deformation across the 2-cell. Making all these identifications for all the
finite 2-cells, we end with a p-net )0, on P1, P as poles, on which is still
a K-chain (by (2.33)). And there are now no two vertices at the same potential
which can be joined without crossing some wire of )10, or separating the poles
in the "outside" region. In particular, there are no zero currents. eYt0 is
called the normal form of , in its given imbedding in the plane.

Notice that, while we have proved that 9, have the same reduced K-chains,
they need not have the same full K-chains.

It is easily seen that the normal p-net of a squared rectangle is its own normal
form.

4.3. We next prove

(4.31) THEOREM. To every p-net 9 in the open plane corresponds a squared rec-
tangle R, whose normal p-net is the normalform of. Polar dual p-nets correspond
to conjugate squared rectangles.

(The polar dual of a p-net 9 in the open plane is itself put in the open plane
in the obvious way--e is taken to be in the "outside".)

Proof. Consider the full K-chain on and its dual, the full K-chain on
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the p-dual net ’. (By (3.31).) Let have complexity C, and let the P.D.
between its poles be V (= V(xy)). Thus ((3.32), (3.33)) the analogous numbers
for 9’ are V and C respectively. We can take the lowest potentials in 9and ’to be zero. Suppose a wire e in has its end-points at potentials V1, V2, and
its dual e* has its end-points at potentials V, V. If is a number such that
V1 < < V2, we say that e comprises ); and if is such that V < , < V,
then e comprises (, ). If both relations are true, we say that e comprises
(, ).
Now, observing that V V, current in e current in e* V’ V,

we construct a squared rectangle R as follows: In a rectangle of height V and
base C, we take, for each wire e of , the (closed) square E whose horizontal
sides are at a height V, V above the base (x-axis) and whose vertical sides are
at a distance V, V to the right of the left-hand vertical side (y-axis). If the
current in e is zero, this square reduces to a single point, and is omitted.

Let k any potential of a vertex of ’, and any potential of a vertex of
9. Then, if 0 < < C, and 0 < < V, we have the following:
The wires (of 9) comprising (,) form a single path from pole to pole,.along

which the direction of the current is constant. For, by (4.12) and duality,
there is just one such wire terminating at each pole; and from (4.14), if one
such wire carries current to a vertex, then iust one such wire carries current
from that vertex, and no more such wires terminate at that vertex.
Along this path, the potential increases steadily from pole to pole; also, by

choice of , the currents along the path are non-zero. Hence just one wire in
it comprises ). So just one wire of comprises (, ). Thus the point
of cobrdinates (, ) belongs to just one of the squares E. It follows that the
whole rectangle is filled completely and without overlap (except of boundaries
of squares).

It is easy to see that the normal p-net of the squared rectangle so constructed
is--to within reflection in the axes (which we always disregard)--the normal
form of . Also, it is clear from the construction that the squared rectangle
assigned to 9 differs from that assigned to 9’ only by interchange of horizontal
and vertical; i.e., the two squared rectangles are conjugate.

In this way, we have a 1-1 correspondence between classes of p-nets in the
plane having the same normal form, and "oriented" squared rectangles.

DEFINITIONS. As suggested by (4.31), the complexity of a p-net is called
its (full) horizontal side (often written H instead of C); and the full P.D. between
its poles is its vertical side (V). The "full elements" and "full sides" of a
squared rectangle refer to those of its normal p-net. The "reduced elements"
will be the same for all corresponding p-nets.

4.4. Defining a cross as a point of a squared rectangle which is common to
four elements, and an "uncrossed" squared rectangle as one which has no
crosses, we have:

The normal p-nets of uncrossed conjugate squared rectangles are p-duals.

For let 9 be the normal p-net of the squared rectangle R; and let ’ be the
p-dual of 9. Let be the normal p-net of the conjugate R’ of R; thus, from
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4.3, is the normal form of ’. Now, in deriving the normal form of 9 (as
in 4.2) there are no zero currents to suppress; and there are no identifications
of vertices possible, as otherwise R’, and hence R, would have a cross. So

’ . That is, 9) and are p-duals.
(This result could be extended to crossed squared rectangles by making a

suitable convention modifying the normal p-net when crosses are present; e.g.,
by regarding a cross as an "element of side zero".)

5. Enumeration of squared rectangles

5.1. Computation. To find all the squared rectangles of a given order n, we
have only to make a list of all p-nets having n wires. There is no difficulty in
this, if n is not too large. We can save some labor by noting that p-dual nets
give essentially the same rectangles; also we can assume that no part of a net,
not containing a pole, is joined to the rest only at one vertex. (For the currents
in this part would all be zero, whereas we can restrict ourselves to "normal
forms".) A convenient way of carrying out the calculations is to consider
the c-nets. From each net of n - 1 wires, we remove one wire and take its
end-points as poles in the remaining net (if it is a net;i.e., is connected). Dual
c-nets give rise to pairs of polar dual p-nets;so we need consider only half the
c-nets. The working can be simplified by a proper use of 2.2. In practice,
the Kichhoff equations are best solved directly (without using determinants);
a single determinant then gives the full elements for all the p-nets derived
from one c-net.

It follows from 2.3 that all p-nets derived as above from the same c-net
will have the same (full) semiperimeter, ,iz., the horizontal side of the c-net;
and that two p-nets which differ only in the choice of poles, and their (non-polar)
duals, all have the same (full) horizontal sides, viz., the complexity of the nets.
(By (3.25).) Thus a number which appears in the (n - 1)-th order as a side
appears (several times) in the n-th order as a semiperimeter. These facts are
illustrated in the table below (5.3).

5.2. The perfect rectangles of least order. Simple perfect rectangles

(5.21) A squared rectangle vhich contains a smaller squared rectangle (and any
p-net corresponding to it) is called compound; all other squared rectangles and
p-nets are simple. A p-net , without zero currents, which has a part such
that contains more than one wire, , is joined to the rest at only two
vertices Q1, Q, and contains no pole (except perhaps for Q1 or Q) is compound.
For must be connected; and the squared rectangle corresponding to 9 will
contain the smaller squared rectangle which corresponds to (with Q1, Q
as poles).

(5.22) "Trivial" imperfection. If a p-net has two equal non-zero currents, it
is imperfect, and these currents constitute an "imperfection". (This is equiv-
alent to saying that the corresponding squared rectangle is not perfect.) If a

p-net has a part, not containing a pole, joined to the rest by only two wires, or
if it has a pair of vertices joined by two (or more) wires, these two wires will
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clearly have equal currents. If these currents are non-zero, the resulting
imperfection is said to be trivial. A p-net which has a non-trivial imperfection
is called non-trivially imperfect. A non-trivially imperfect p-net may or may
not have a trivial imperfection.
We now have the theorem:

(5.23) The c-net derived from a simple perfect rectangle has no part (consisting of
more than one wire and of less than all but one wire) joined to the rest at less than
three vertices; and the same is true of its dual.

For the normal p-net of the simple perfect squared rectangle (or of the con-
jugate squared rectangle) will otherwise have a zero current, or a trivial imper-
fection, or be compound.
A perfect rectangle of the smallest possible order must evidently be simple.

Applying (5.23) to the method of 5.1, we readily find that
There are no perfect rectangles of order less than 9, and exactly two perfect rec-

tangles of order 9.
Of the latter, one is well known ;12 the other is, we believe, new and has been

drawn in Figure 1.
Below, we give a list of the simple perfect rectangles of orders 9-11. The

compound perfect rectangles of these orders follows trivially.

5.3. Table of simple perfect rectangles.

Order

10

Full Sides

66, 64

69, 61

114, 110

130, 94

104, 105

111, 98

115, 94

130, 79

Semi-
perim-

eter

130

130

224

224

209

209

209

209

Description of Polar Net
(current from Pa to P, ab)

ab 30, ac 36, bd 14, cd 8, be 16,
de 2, ef 18, df 20, cf 28.

ac 25, ab 16, ae 28, bc 9, bd 7,
dc 2, de 5, cf 36, el= 33.

ab 60, ac 54, cb 6, ce 22, cd 26,
be 16, ed 4, bf 50, ef 34, df 30.

ab 44, ac 38, ae 48, cb 6, ce 10,
cd 22, ed 12, bf 50, df 34,
el- 46.

ab 60, ac 44, cb 16, cd 28, bd 12,
be 19, de 7, bf 45, ef 26, df 33.

ab 44, ad 26, ae 41, dc ll, de 15,
ce 4, cb 7, eb 3, bf= 54, el= 57.

ab 34, ac 19, ad 23, ae 39, cb 15,
cd=4, de= 16, db= ll, bf=60, ef=55.

ab 34, ac 23, ad 35, ae 38, cb 11,
cd 12, de 3, bf 45, df 44, ef 41.

Reduc-
tion

1 First found, apparently, by MoroS. [11]. See also [10], p. 272; [2], p. 93; [14], p. 8;
and [4].
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The full sides and semiperimeters of the simple perfect rectangles of the 11-th
order are:

Order

11

perimeter

336
353
368
377
386

Sides

127, 209; 151, 185
144, 209; 159, 194; 162, 191; 166, 187; 168, 185; 176, 177
159, 209; 169, 199; 172, 196; 177, 191; 183, 185
168, 209 178, 199 183, 194
162, 224; 177, 209; 181, 205; 190, 196; 191, 195; 192, 194

Four of these are reducible, with reduction 2; these are the rectangles
whose sides are both even.
Of the 67 simple perfect rectangles of the 12-th order, eleven have reduction

2, eight have reduction 3, and one has reduction 4.

6. Theorems on reduction

In perfect rectangles of higher orders, much larger reductions occur; for
example, a 19-th order rectangle with reduced sides 144 and 155 has p 80.
Its reduced elements are: ab 46, ad 40, af 28, ag 41, bc 10, bi
36, ci 26, dc 16, de 3, dh 21, eh 18, fe 15, fg 13, g/c 54,
hl 39, ij 62, kj 49, kl 5, lj 44.

6.1. The following theorems on reduction are of interest.

(6.11) THEOREM. If one of the currents in a p-net is zero, the net is reducible.

Let the poles be Pr, Ps, and the zero current be in a wire joining P, P.
Then the transpedance [rs, xy] is zero. On removing the wire in question (use
(2.37) with c -1, and (2.33)), the new value for [rs, tu] is

[rs, tu]’ [rs, tu] [rs, tu]. V(xy) [rs, xy]. [tu, xy]
C

[rs, tu].C- V(xy)

Now, C > C V(xy) C’ (by (2.35)) > 0 (by (3.14)). Hence the H.C.F.
of the [rs, tu]’s must be at least C/(C V(xy)) > 1.
DEFINITION. Let a positive integer n m. ]2, where m is square-free. Then

k is called the lower square root of n, and talc is the upper square root.

(6.12) THEOREM. Let the full sides of a p-net be H, V. Then the reduction p

is a multiple of the upper square root of the H.C.F. of H and V.

By (2.34), remembering that V2(rs) is an integer, we have

C divides V(rs). V(xy) [rs, xy].
Since C H, and V(rs) V (taking Pr, P8 as poles), it follows that the

H.C.F. of H, V divides Its, xy]; whence the result.
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(6.13) COROLLARY. If the reduced sides of a squared rectangle have H.C.F.
then the reduction of any corresponding p-net is divisible by

(For, by (6.12), is a factor of the lower square root of the H.C.F. of the
full sides and hence--since the lower square root divides the upper--of p.)

(An example is the rectangle 96 X 99 given in 7.1.)
(6.14) COROLLARY, Any p-net of a squared square has for reduction a multiple
of its reduced side.

(6.15) COROLLARY. A necessary and sucient condition that a p-net be irreduci-
ble is that its two full sides be coprime.

(6.16) THEOREM. All non-trivially imperfect p-nets are reducible.

(6.17) LEMMA. If H, V, l are positive integers such that, for each positive integer
n, (H nV, ]) > 1, then H, V, ] all have a common factor greater than 1.

Proof. Let No be the product of all the primes which divide/ but not H.
(Empty product 1.) Let p0 be a prime factor of (H NoV, t). Suppose
p0 /H. Then p0 IN0. Hence, since po (H + NOV), we have p0 H, and this
is a contradiction. So p0 H. Therefore p0 divides NoV but not No ;so that
P0 divides V s well as H and

Proof of (6.16). Now let be p-net with full sides H (= C) and
V (= V(1N)); nd let non-trivial imperfection be [1N, ab] [1N, pq]
say. Thusk > 0, nd we do not hve both a pandb q. (Else rheim-
perfection is trivial.)

Join P, P to produce the completed net . Let be the p-net formed
from by taking P, P s poles, nd omitting one wire joining P, P. (Of
course, there is such wire; there my be several. It is esy to see, from
considerations of "triviality", that is connected, nd therefore a p-net.)
Applying (2.33) to , nd using (2.35), (2.36), (2.37), we have

(6.18) (H + V) lc. (V(ab) [ab, pq]),

where V(ab), [ab, pq] refer to the p-net formed by with Pa, Pb as poles, and
hence (2.36) refer equally well to .
Now, we have 0 < V(ab) [ab, pq]

_
semiperimeter of g, with equality

only if the current lab, qp] equals the total current of . In this case, must
consist of two parts, joined only by the two wires PaPb and PpPq. Further,
P1, P, being joined in by a wire not PaP or PpPq, must lie in the same
part. Hence the imperfection in with which we started was trivial.
Hence (6.18) gives (since semiperimeter of t complexity of H - V)

(6.19) (H + V, It) > 1.

Now let n be any positive integer. Join PI, Pv by n 1 extra wires (of
unit conductance). The new p-net will have the same non-trivial imperfection
(by (2.36)), so, applying (6.19) to the new net, and using (2.35), (2.32) re-
peatedly, we have

(H + nV, k) > 1.
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The lemma (6.17) now shows that (H, V) > 1. Hence, by (6.15), is
reducible.

(6.20) COROLLARY. All irreducible p-nets having no trivial imperfections give
perfect squared rectangles.

(6.21) COROLXRY. If the complexity of a c-net is prime, all the squared rectangles
derived from it (as in 5.1) will be perfect.

These results are sometimes useful as tests for perfection.
For the reduced elements, we can prove (using the Euler polyhedron formula,

and some consideration of the various cases)
(6.22) At least three of the reduced elements of any perfect rectangle are even.
(Three is the best number possible.)

7. Construction of some special squared rectangles

7.1. Conformal rectangles. Two squared rectangles (or p-nets in this plane)
which have the same shape (that is, have proportional sides) but are not merely
rigid displacements of each other (in the case of p-nets, have not the same normal
form) are called conformal. An example of a conformal pair is provided by the
9-th order rectangle 64 X 66 and a 12-th order rectangle of reduced sides 96, 99,
whose (reduced) net is specified by: ga 31, ge 21, gc 44, ea 10, ed
11, ad 1, dc 12, ac 13, ab 27, cb 14, bf 41, cf 15.
Two conformal rectangles need not have the same full sides or reduction;

for example, the rectangle 96 X 99 has reduction 3 (cf. (6.21)).
We now show how to construct conformal pairs having the same reduced

elements (but differently arranged).
Suppose that a p-net 9 has a part joined to the rest only at vertices

A, A, say, and containing no pole different from an A. If has rota-
tional symmetry about a vertex P, in which the A’s are a set of corresponding
points, then a simple symmetry argument shows that the potential of P (in )
will be the mean of the potentials of A, A. Hence if this is also true
for another vertex P’, P and P’ will have equal potentials.

Coalesce P and P’, forming (if this can be done in the plane) the p-net .
If C is the complexity of , we see from (2.33) that, if lab, 1N] and lab, 1N]
are corresponding elements in and . (with 1, N referring to the poles),

[ab, 1N]2 V(PP’) [ab, 1N]
C

Hence the elements of are proportional to those of ; 9and have the same
reduced elements and sides. Their reductions are clearly in the ratio C: V(PP’).
This construction enables conformal p-nets with the same elements to be
written down.
A simple example is shown in Figure 2. Here A1 and A2 are poles. The

rectangles are perfect and simple, and have reductions 5 and 6, and reduced
sides 75 and 112.
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In a more complicated example, illustrating a variation on the method, we
make the potentials of three points P1, P., P3 equal. Although the network
we start with is not planar, it becomes so when either PIP2 or PP3 coincide.
Such a network is specified below. It gives conformal simple perfect rectangles
of the 28-th order, with reductions 96 and 120, reduced sides 6834 and 14065, and
reduced elements: Ala 3288, AP 3480, Ab 2512, Aid 2247, Ai
2538, aPa 192, aAa 3096, bPa 968, bA2 1544, PA2 576, P1Aa
2904, P3c 1160, Ac 584, cA 1744, de 1014, dP 1233, eA2 795,

39 42.
3/

lip

3/

II 20

/12

F. 2

eP. 219, iP 942, ih 1596, P.h 654, P2f 579, P2g 1161, hA
2250, A2f 3, fg 582, gAa 1743, AAa 2328. (The poles are A and A3.)

These examples show that, even when the sides and elements of a simple
perfect rectangle are given, the configuration is far from uniquely determined.
We now turn to the opposite problem of constructing conformal pairs of

squared rectangles having different sets of elements. Again, symmetry con-
siderations enable us to do this. We are led to pairs of rectangles (and p-nets)
which are not merely conformal but have the same full sides. Such pairs are
said to be equivalent.

7.2. Symmetry method. Let a p-net have a part joined to the rest only
at vertices A, Am, and containing no pole different from an A i. Sup-
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pose that has rotational symmetry in which the A’s are a set of corresponding
points, and that is not identical with its mirror-image. is the rotor, and
the wires of - form the stator. In , replace g by its mirror-image. It is
easy to see that the full currents in the stator will be entirely unaffected, though
(in general) the rotor currents will change. (This can be proved, e.g., by
induction over the number of wires in the stator, if we use 2.) So we have, in
general, a pair of equivalent rectangles, with different (though overlapping)
sets of elements.
One of the simplest examples of this method is shown in Figure 3. This

gives equivalent simple perfect rectangles of order 16, reduction 5, and reduced
sides 671 and 504.la

FI. 3

We may generalize this method by noting that it remains effective when some
of the A’s are coincided (corresponding to the introduction of "wires of infinite
conductance" in the stator). Or, again, we may take the stator to be itself a
rotor, with A1, A as its set of corresponding points (with possible coin-
cidences). By reflecting both parts we can get pairs of equivalent rectangles
having no elements in common.

7.3. Special methods. The preceding methods (and similar ones based on
duality instead of symmetry) are useful for existence theorems, as in the next
section; but other devices are more suitable for producing equivalent rectangles
of small orders.

If, in a c-net , we can find two wires whose end-points--say Pa, Pb and
P, P, respectively--satisfy

(7.31) V(ab) V(xy) (in ),
1 The rotor of Figure 3 has a remarkable property. If currents 11, It, Is (summing

to zero) enter the rotor (considered as a net) at A1, At, As, then the currents in B8C1, BC:,
BC will be 11/7, I/7, 18/7, respectively. This explains the "extra" equalities of the
currents in Figure 3. Other rotors of 15 wires (having the same type of symmetry) behave
in a similar way. This phenomenon is not yet fully explained.
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then the corresponding p-nets (obtained from by omitting each of the two
wires in turn, and taking its ends as poles) will be equivalent, if not identical.
For they have the same semiperimeter in any case, viz., the complexity of .
By using the properties of symmetrical or self-dual networks, we can often

demonstrate an equality like (7.31). For example, in Figure 4, it is clear that

(7.32) V(gh) V(cb)

and

(7.33) Ida, gh] O.

Hence (by (7.33) and (2.23) and symmetry)

(7.34) [de, gh] [ae, gh] [de, cb].

Now, (7.32) and (7.34) imply (if we use (2.37) and (2.33)) that the impedances
of gh and cb remain equal when we add a wire joining de. Hence this new c-net

Fro. 4

satisfies (7.31), and so we get a pair of equivalent squared rectangles of the
12-th order. These rectangles are perfect, and provide the simplest example
of equivalence among perfect rectangles. They both have reduction 2 and
reduced sides 142 and 162. Their (reduced) specifications are respectively:

gf 57, gd 85, dh 77, de 12, ad 4, fe 40, be 13, eh 65,
ab 3, ca 7, cb 10, fc 17; andcf 59, ca 83, re 40, fg 19,
gh 10, he 11, gd 9, dh 1, ad 4, de 12, eb 63, ab-- 79.

8. Construction of perfect squares

8.1. Definition. Two conformal rectangles are said to be totally different if
C. times an element of the first is never equal to C1 times an element of the
second, where C1, C are their respective (corresponding) horizontal sides.
For equivalent rectangles this is equivalent to" No element of the first equals

an element of the second.
A pair of totally different simple perfect squared rectangles gives us a perfect

square at once; we have only to place them as in Figure 5, and add two corner
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squares. This idea, though often in modified form, underlies all the construc-
tions for perfect squares in this paper.

(8.11) It is easy to show (by the use of determinants) that if H, V and H’, V’
are the full sides of the rectangles used in this construction, then the resulting
square will have full side (H + V). (H’ - V’). In particular, if the rectangles
are equivalent, the full side of the square is the square of an integer.

FxG. 5

FIG. 7 FIG. 8

8.2. Symmetry method. Equivalent perfect rectangles constructed as in

7.2 can be used to give us a perfect square. The stator is taken to be a single
wire AA (drawn outside the rotor), one of whose end-points is a pole. The
equivalent rectangles so obtained will have, in general,14 just one element in
common, the element corresponding to this stator. As this element is placed
at a corner in both rectangles, we may "overlap" the rectangles as in Figure 6
to get a square.
One of the simplest perfect squares formed in this way is based on the rotor

and stator shown in Figure 7. The square is of the 39-th order.

(8.21) It can be shown that, if H, V are the full sides of the equivalent rectangles
used in this construction (8.2), and E is the common element, then the full

1 The "exceptional case", in which two elements from the following set" the rotor, its
reflection, and the stator-element, are equal, seems in practice to be rare. It does occur,
however, if the rotor has trivial imperfections, or if it has too much symmetry, or if it has
triad symmetry and only 15 wires (cf. the previous footnote).
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side of the resulting squared square is (H - V E), the square of an integer.
In the case of triad symmetry (m 3 in 7.2), we can show that E. (2H 2V
E) HV, so that the full side of the squared square is, in this case,
H z7 HV + V.

8.3. Perfect squares of smaller orders. A perfect square of much smaller
order is given by an elaboration of 7.3. We can show by an argument similar
to that in 7.3, but longer, that in the net shown in Figure 8, V(cf) V(ge).
(We use the facts that, if g and f are coalesced in Figure 8, the net becomes

symmetrical and self-dual, and that Figure 8 results from Figure 4 by joining
de.) Hence the two p-nets obtained by taking respectively c, f and g, e as
poles in Figure 8 are equivalent (for their horizontal sides both equal the com-
plexity). They are in fact perfect and totally different; and, though not both
simple (the c, f one being obviously compound), the method of 8.1 is easily
modified to give a perfect square, which is drawn in Figure 9. It is of the 26-th
order. (The least possible order of a perfect square is unknown.)
We have also constructed, in a similar way, two perfect squares of the 28-th

order, each of full side (1015) and reduced side 1015.15

8.4. Simple perfect squares. The perfect squares constructed so far have all
been compound. By generalizing the method of 8.2 to certain "squared
polygons", we can obtain "simple" perfect squares.

First, let O[ be a net with A1, Am as the vertices of its "outside" poly-
gon, in order. Consider an electric flow in in which all of A1, Am are
poles--i.e., in which currents I (not all zero) enter O at A ( I 0). Sup-
pose that I >__ 0 if i > 1. (This could be weakened; but some restriction on
the order of the ingoing and outgoing currents is necessary.) Then the flow
in O[ corresponds to a squared polygon, of angles 1/2r and -r.

Proof. We reduce the number of poles of O[ as follows: Suppose A is at
potential V. Suppose there is more than one i for which I > 0; let 1’, 2’ be
the least and second least such i’s. If V1, V.,, coalesce A1, and As, (by
joining them by a line outside the polygon A1... Am and shrinking the line
to a point); and let current 11, -t- I, enter there, the other currents being as
before. The currents in O[ will be unaltered, and there is now one fewer positive
current entering the network. If VI, V,, we can suppose V1, > Vs,. Join
A1,, As, by a wire of conductance Is,/(V, V,) (passing outside the polygon
A1 Am) and take currents (11, - Is,) at A,, 0 at As, and I at A for the
other i’s. Again, the currents in will be unaltered, and one fewer positive
current enters the system. Repeating this process till there is only one positive
external current left, we have the flow in 63 "imbedded" in a flow with only
two poles;in fact, in a p-net flow (except that some of the extra wires may have
conductances different from 1). This corresponds to a "rectangled rectangle" R.

See [16].
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Stripping off the elements of R which correspond to the extra wires, we are
left with a squared polygon, corresponding to .

Since the currents Ii are (apart from sign) at our disposal, the shape of the
squared polygon can be controlled. (It has m 2 degrees of freedom.)
Now take for a pure rotor--i.e., a network having skew symmetry; and

suppose that the points A1, .-., Am are a set of corresponding points in 9[.

2.31

172

135 123 11,9

FIG. 9

If is replaced by its reflection (leaving the currents I invariant), the new
squared poIygon will have the same shape as the oldwin fact, the two squared
polygons will be "equivalent". For, as in 7.2, the rectangled rectangle R will
be replaced by an equivalent one, in which the "extra" elements are the same as
before.
By combining such a pair of equivalent polygons, as in Figure 10, and ar-

ranging their shape so that the overlapped portions coincide with elements
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(which are then removed), and inserting three extra squares (in the center and
at the corners), we can obtain a "simple" perfect square.
For instance, the rotor shown in Figure 11 gives rise to a simple "uncrossed"

perfect square of order 55, which, when drawn out, disguises its symmetrical
origin very skillfully.

9. Perfect subdivision of the general rectangle

9.1. We begin by proving:

(9.11) There exist infinitely many totally different perfect squares.

We construct such an aggregate of squares by the method of 8.2, taking for
our equivalent rectangles those furnished by the "rotor-stator" diagram (cf.
7.2) of Figure 13. In this diagram, A1, As are the poles, and the wire A1A3
is the stator. The three "resistances" A,B:, etc., denote three copies of the
p-net of some perfect rectangle. We shall select a sequence of suitable
p-nets, and, for each , form the corresponding square . The sequence

will then (as follows from (9.39)) have a subsequence of perfect squares,
every two of which are totally different. This will prove (9.11).

9.2. The perfect rectangles n. Let n be the p-net shown in Figure 12,
with P0, Q0 as poles.

Write ,. [(2 + /)r (2 %//)r]/2%/-. Thus

(9.21) Cr is an integer; 0 0; and ,.+1 4,. + ,.-1 0.

It will readily be verified that a solution of Kirchhoff’s equations is given by:

(9.22) Current in POP,. (from P0 to P,.) is at, where

ar 1/2.[5 + _1 + 3r- 3,.-1] if 0 < r < n,

a+l

Current in P,.Qo is b,, where

b, 1/2.[5n --1- 3- 3,_] if 0 < r < n + 1,

b+ 2 - Cn_.
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Current in PrPr+l is Cr, where

cr 3r if0 < r <n,

--cn Cn _1.

(This solution is in fact the full flow.)

335

Qo
FxG. 12

Also the total current p (the horizontal side of 9), and the total P.D.
q (the vertical side) are given by:

(9.23) pn 1/2.[(5n

Now, if n > 2, we see that

If n > 2, is perfect.

qn and p,/q,, with n.

(P,, q,) 9.

Hence

(9.24)

From (9.23), we have

(9.25)

For later use, we note that

(9.26)

Proof. From (9.23),

(n 3- 2)q,- 2p, 9, and (5n -i- 1)q,- 10p, 9,_.

Now, we can prove by induction (using (9.21)) that (,, _1) 1. Thus
(9.26) follows.

[(9.24) can be generalized: If in Figure 12 the wire PoP, is inserted and the
wire PoP, removed, where 1 < r -< 1/2n, the resulting p-net 9, is perfect. 9,
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is essentially the same as . The reduction pr of 9, can be calculated; for
instance, it can be shown that p, is a factor of (, -1); and that p, (,
_1) if and only if n 0 (mod 2r 1).]

9.3. We next prove

(9.31) THEOREM. For all large n, the squared square , is perfect.

Consider the equivalent p-nets of Figure 13, where each "resistance" denotes
a certain p-net , of horizontal side p and vertical side q. (The other wires
have conductance 1, as usual. Later, 9n will be taken as

16c +30c +11 Ibc+30c+/I

Jc’+12c+ll B,
Ibcz 30c+11 16c 30c+11

FIG. 13

Setting c p/q effective conductance of these resistors, we find that the
flows are as indicated in the diagram. (The quantities shown are currents.)

Hence, multiplying through by q2, and adjoining the extra elements required
in forming the squared square $ as in 8.2, we find that the elements of $ (some
integral multiple of the reduced elements) are"

(A) 14p+ 21pq + 7q, 5p + 14pq + 11q,
5p + 4pq- q2,

3p + 17pq + 20q, 3p 13pq + 11q,
(9.32)

B)

5P 4- 13pq "4- 7q2,

5P -t- 3pq- 5q,
3P -t- 7pq "t" q2,

3P "-t- 6pq -t- 4q, 3p 6q,
2p + 9pq + 4q, 2p + 8pq + 7q, 2p + 4pq + 5q,

2p 4q, 2p 4pq-- 6q.
Multiples of the elements of, the multipliers being respectively

13p -t- 17q, 12p 13q, llp + 16q, 9p -F 8q, 4p + 9q, p 3q.
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We also fred that

(9.33) The side of $ is 19p 47pq - 31q.
Now take 9 to be 9, so that p p. and q q. and let n be so large that

(in virtue of (9.25))

(9.34) p. > 180q..

We prove that, under this condition, $ $ is perfect.

(9.35) The elements (A) are all different, and no element (A) equals an element (B).
For the elements (A) in the above list are in strictly decreasing order; so no

two of them are equal. Also the least element (A) is 2p 4pq 6q which
> (13p + 17q)q, which is greater than any element (B). Thus (9.35) follows.

(9.36) No two elements (B) are equal.

For suppose that two such elements are equal:

(9.37) (p - q) (/p + tiq),

where }, y are elements of , and ap -t- flq, ’p + tiq are two multipliers of
(9.32). They are different multipliers; for J( is perfect by (9.24). Hence, by
inspection of (9.32), a , 0. But, from (9.37), (a} ,)p (i })q.
Hence

(9.38) p (ti,/ }). (p, q).

Now, if i } 0, we have (since p 0) a} , 0, and hence, if we
eliminate }, , (which are not zero), it follows that 36 , 0. So we have
0 <[i }1 < 20q (by inspection of (9.32), since 0 < }, < q).

Hence, if we use (9.26), (9.38) gives p < 180q. This contradicts (9.34). And
(9.31) now follows from (9.35) and (9.36); the squares $ are perfect, for large
enough n.

(9.39) THEOREM. Given any large enough n, then for all large enough N,
and are totally different.
Writep p,q q,p P,q Q. We bring $ and to the same

size by multiplying the elements of (as given by (9.32)) by 19P - 47PQ
31Q and those of by 19p - 47pq + 31q. (This follows from (9.33).)
(9.40) Each element (B) of is less than every element of
For a typical element (B) of $ is

e (aP + Q).(19p - 47pq - 31q2), where a I, !1 -< 17.

if n and N are large, this gives e < 360Pp. (This follows from (9.25).)
But each element of $ is at least as large as Pp (times some non-zero constant).
Hence if n > some no, and if then N > some No(n), so that P is large compared
with p (see (9.25)), we have e < each element of $.
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(9.41) Each eement (A) of is greater than every eement (B) of
For any element (A) of is at least as large as Pp (times some non-zero

constant), whereas an element (B) of . is less than 360Pp.
(9.42) No eement (A) of v can equa any element (A) of
Otherwise we have

(aP - bPQ + cQ). (19p - 47pq + 31q)
(a’p - b’pq - c’q).(19P - 47PQ - 31Q),

where by (9.32) a, a, etc., are integers numerically less than 22. Hence

P.[(19a- 19a)p + (47a- 19b)pq

+ (31a 19c’)q] similar terms in PQ and Q.
Now, 47a 19b’ 0; for otherwise 191a whereas 0 < a < 19 (from (9.32)).

Hence the left side of (9.43) is numerically at least as large as Ppq (times some
non-zero constant); in fact, if a a, it is as large as Pp. But the right side
of (9.43) is at most PQp (times a constant). Hence, if N is taken large enough,
so that P dominates both p and Q (this is possible, by (9.25)), (9.43) is im-
possible.

(9.40), (9.41), and (9.42) imply (9.39).
(9.44) COROLLARY. There is a sequence {-} of perfect squares, every two of
which are totally different.

This is immediate from (9.31) and (9.39) and proves (9.11).
A rough calculation shows that we may take 9-, $0,(,+). This could

probably be greatly improved.

(9.45) THEOREM. Any rectangle whose sides are commensurable can be squared
perfectly in an infinity of totally different ways.

Magnifying the rectangle suitably, we may suppose that its sides are integers
h, k. Divide it into h/ squares of side 1, by lines parallel to its sides. Take
any positive integer n, and replace the i-th of these unit squares by 9"a+ (suit-
ably contracted). By (9.44), this gives, for each n, a perfect subdivision of the
given rectangle; and these subdivisions for any two values of n are "totally
different".

Using the theorem of (2.14), we see that a rectangle can be squared perfectly
if it can be squared at all.

It is plausible that any commensurable-sided rectangle can be squared
perfectly and simply; possibly this can be proved in a similar way if we use
some extension of 8.4; but this seems to involve laborious calculations.

10. Some generalizations

We mention briefly some of the extensions of the methods and results of this
paper. A fuller discussion may perhaps appear later.
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10.1. Rectangled rectangles. An immediate and natural generalization (as
pointed out in 1.2) is to the problem of a rectangle dissected into a finite number
of rectangles. The wires of the p-net merely have general (not necessarily
equal) conductances.

There is also (cf. 8.4) a rather trivial extension in which the dissection is of
a polygon (of angles 1/2r and ). A more natural generalization, however, is
given in the following section.

10.2. Squared cylinders and tori. We may regard a squared rectangle, after
identification of its left and right sides, as a "trivial" example of a squared
cylinder. The squared cylinders are found to correspond exactly to the relaxa-
tion of the condition (1.12) that no circuit of the p-net may enclose a pole. A
second step brings us to the "squared torus". Using the existence theorem of
(9.45), we can easily construct such figures. It is also possible to construct a
simple non-trivial perfect torus; but this is Mot so easy.
Of course, the word "squared" may be replaced by "rectangled".

10.3. Triangulations of a triangle. In a rather different direction, we may
consider dissections of a triangle into a finite number of triangles; particularly
when all the triangles considered are equilateral. It is easily proved that
tre is no perfect equilateral triangle; i.e., that in any such dissection of an
equilateral triangle into equilateral triangles, two of the latter are equal. Apart
from this, the theory extends fairly completely. Duality relations, for example,
are replaced by "triality" relations. We could also consider dissections into a
mixture of equilateral triangles and regular hexagons, no two of these elements
having equal sides; essentially this amounts to agglomerating the imperfections
of an "equilateral triangled triangle" together by ’sixes. There is no difficulty
in constructing such figures empirically, or in finding "perfect isosceles right-
angled triangles"; however, it can be done by using the theory.

10.4. Three dimensions. We have seen that the "p-net" and its generaliza-
tions are satisfastory for plane dissections. As yet, however, there is no satis-
factory analogue in three dimensions. The problem is less urgent, because
there is no perfect cube (or parallelopiped). That is, in any dissection of a rec-
tangular parallelopiped into a finite number of cubes ("elements"), two of the
latter are equal.

Proof. It is easily seen that in any perfect rectangle, the smallest element
is not on the boundary of the rectangle. Suppose we have a "perfect" cubed
parallelopiped P. Let R1 be its base. The elements of P which rest on R1
"induce" a dissection of R1 into a perfect rectangle. (We can clearly assume
that more than one cube rests on R1 .) Let sl be the smallest element of R1.
Let c be the corresponding element of P. Then cl is surrounded by larger,
and therefore higher, cubes on all four sides; for, as remarked above, s is sur-
rounded by larger squares. Hence the upper face of c is divided into a perfect
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rectangle R by the elements of P which rest on it; let s be the smallest element
of R and so on. In this way, we get an infinite sequence of elements c. of P,
all different (for c+1 < c). This is a contradiction.

This proof excludes generalizations of "perfect cylinders" to three (or more,
a fortiori) dimensions; but it does not exclude the possibility of a perfect three-
dimensional torus (product of three circles). It is not known whether such a
thing can exist.
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