
Markov Decision Processes and
the UCT algorithm

Carlo Hämäläinen
carlo.hamalainen@gmail.com

October 28, 2009

Abstract

In this note we introduce the concept of a Markov Decision Process. We
show how to solve for the optimal policy and value vectors for two examples
(iPod shu�e and sailing shortest path) using value iteration. We then show
how to use the UCT algorithm on the same two problems. Complete source
code (in Python) is available.

1 Introduction
�is �le and related source code is available at
http://carlo-hamalainen.net/stuff/mdpnotes

An MDP (Markov Decision Process) is fully described by the following items:

• A set of states S. Here we will only consider the case that S is �nite, but it
may in general be in�nite.

• A set of actions A. An action is a function that takes us from some state to a
new state.

• For each action a ∈ A and state s ∈ S, the transition probability Pa(s, s′) is
the probability of moving from state s to s′ under action a.

• For each state s, the (local) cost of taking action a ∈ A is denoted cost(s, a).

1

http://carlo-hamalainen.net/stuff/mdpnotes

Here we will assume that the cost is �xed for each state-action pair (s, a). (It is
possible to extend the de�nition to stochastic costs.)
If we reach a target state t ∈ S then we stop. �e goal is to �nd a policy π

that gives the optimal action π(s) ∈ A for each state. �e Markov property means
that the transition probabilities Pa(s, s′) only depend on the current state s and the
action a (so no information about past states is used). Once we have an optimal
policy π we can use it in a simulation as shown in the pseudo-Python of Figure 1.
�e next_state function assumes that we have available a generative model of the

s = initial_state

this_cost = 0

while s != target_state:

best_action = pi[s]

this_cost += cost(s, best_action)

s = next_state(s, best_action)

print this_cost

Figure 1: Using an optimal policy π to run a simulation of an MDP.

MDP that allows us to sample from the possible next states given a state and action.
In particular we do not need to know the explicit transition probabilities Pa(s, s′).

2 iPod example
A “real world” example [5] comes from the iPod shu�e, an MP3 player with two
modes: sequential (in order) play and shu�e. �ere is no screen so �nding a par-
ticular song can be di�cult – you can either jump around randomly or try to move
forwards (or backwards) in a linear manner.
We can assume that the N songs on our iPod have been sorted in some sensible

way, and we’ll label the songs 0, 1, . . . , N − 1. �ere are two actions that we can take
at any given song (state)

• Sequential: set the iPod to non-random playback and use the forward or
backward track buttons to get to the target song. If we are at song s and the

2

target song is t, then this strategy will take ∣s − t∣ button presses to �nd the
target.

• Shu�e: set the iPod to random playback andmove to the next track if we are
not at the target song. �is incurs a cost T because it will take us some time
to recognise the new song.

In a typical execution of this algorithm we will start at some initial song, ran-
domly skip around a bit, and then use the sequential action to get to the �nal song.
Or, if the target song is very close, we would only use the sequential strategy.
Suppose that the iPod has N songs. �e set of states for this MDP is

S = {0, 1, . . . ,N − 1}.

�ere are two actions, so

A = {sequential, shu�e}.

For the costs, the sequential strategy takes ∣s − t∣ button presses from state s, so

cost(s, sequential) = ∣s − t∣ .

�e shu�e action only takes us to a di�erent track but we have to recognise if this
is the target song, so

cost(s, shu�e) = T

for some constant T . Finally we have the transition probabilities. �e sequential
action is guaranteed to take us to the target song, so Psequential(s, s′) = 1 if s′ = t
and 0 otherwise. �e shu�e action merely takes us to another track, with equal
probability, so Pshu�e(s, s′) = 1/N for any state s′.

3 Value iteration
To �nd the optimal policy π we will compute the value vector V . For each state
s ∈ S, V(s) is the expected cost of reaching the target state, using the best possible
sequence of actions starting at state s.
We can start from an initial value vectorV0(s) = 0 for all s ∈ S. �en the update

step is

Vt+1(s) =min
a∈A

{cost(s, a) + ∑
s′∈S

Pa(s, s′)Vt(s′)} .

3

In other words, we minimise the sum of the local cost of taking some action, along
with the expected cost from the possible new states. �e policy is updated at each
step by

πt+1(s) = argmin
a∈A

{cost(s, a) + ∑
s′∈S

Pa(s, s′)Vt(s′)} .

�e value iteration algorithm is guaranteed to converge [1].
We can also apply a discounting factor γ to re�ect the fact that costs (or rewards)

incurred in the future are worth less than ones incurred in the present. If 0 ≤ γ ≤ 1
then the value iteration update is simply

Vt+1(s) =min
a∈A

{cost(s, a) + γ∑
s′∈S

Pa(s, s′)Vt(s′)} .

3.1 Value iteration for the iPod example
See Section 7 for the Python source code for value iteration on the iPod example.
In this example we have γ = 1, so there is no discounting.
With N = 10 songs, recognition cost of T = 0.5, and target song N/2, we get the

following value and policy vectors:

>>> from ipod_mdp import *

>>> N = 10; value_iteration(N, 0.5, N/2)

([2.1984130546875003, 2.1984130546875003, 2.1984130546875003, 2.0,

1.0, 0.0, 1.0, 2.0, 2.1984130546875003, 2.1984130546875003],

['shuffle', 'shuffle', 'shuffle', 'sequential', 'sequential',

'sequential', 'sequential', 'sequential', 'shuffle', 'shuffle'], 2)

For example, if the initial state is 1, an execution may proceed as follows:

• s = 1, π(1) = shu�e. Jump to random song s = 8.

• s = 8, π(8) = shu�e. Jump to random song s = 3.

• s = 3, π(3) = sequential. Click 5 − 3 = 2 times to get to the target state 5.

�e cost of this run is T + T + 2 = 0.5 + 0.5 + 2 = 3, while the value vector has
V(1) = 2.1992065273437502, which is reasonably close.
A general execution with N = 250 and T = 0.5:

4

$ python ipod_mdp.py 250 0.5

mean(V) = 10.6647967086

mean (simulation): 10.679298

difference: -0.0145012913545

shuffle when: 12 or more away

4 Sailing
Original reference: [6]. Imagine a sailing boat on a rectangular lake. Our goal is
to get to the north-east corner of the lake from some starting position. To simplify
things we assume that the lake is divided into a grid of waypoints, and that we sail
from one waypoint to another (so the boat can only travel in one of eight directions
north, north-east, east, etc). To further simplify the situation, we assume that the
wind blows in only one direction for the duration of a journey from one waypoint
to another waypoint. �e wind changes just as we set o� towards a new waypoint.
Directions will be the integersD = {0, 1, . . . , 7}where 0 is north, 1 is north-east,

2 is east, etc. A state s = (x , y, d ,w1,w2) consists of a location (x , y) ∈ N ×N, the
previous boat direction d ∈ D, previous wind directionw1 ∈ D, next wind direction
w2 ∈ D. An action is the direction d ∈ D to sail the boat on the next leg. For each
action a ∈ A and state s ∈ S, the transition probability

Pd′((x , y, d ,w1,w2), (x′, y′, d′,w′

1 ,w′

2)) = 0

unlessw2 = w′

1, (x′, y′) = (x , y)+ d⃗′, in which case the probability is P(w′

1 ,w′

2), the
probability that the wind changes from direction w′

1 to w′

2.
If the boat is in direction d and the wind is in direction w then we have the

following costs:

cost(d ,w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 minute, if α = 0
2 minutes, if α = 1
3 minutes, if α = 2
4 minutes, if α = 3

where α = min(d − w , 8 − (d − w)). We do not allow the case α = 4 which cor-
responds to sailing directly into the wind. �e original description of the sailing
problem also includes a cost for changing tack of the boat (i.e. when the wind goes
from being on the le� side of the sails to the right side or vice versa) but we ignore
that cost to simplify the model.

5

�ewind transition probabilities are given in an 8×8matrixW . �e probability
that the wind will be in direction w2 given that it is currently in direction w1 is
Ww1 ,w2 . In our simulations we �xW to the following matrix:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.3
0.4 0.3 0.3 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.3 0.3 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.3 0.3 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.2 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4
0.4 0.0 0.0 0.0 0.0 0.0 0.3 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can now use value iteration to solve for the value and policy vectors.

4.1 Example of sailing
See Section 8 for Python code for value iteration on the sailing example. We run
value iteration and 10,000 simulations with a lake of size 5×5, target location (4, 4),
and all other parameters as described above.

$ python sailing.py "value_iteration_example()"

Top of value_iteration(), max difference: 1.0

Top of value_iteration(), max difference: 4.0

Top of value_iteration(), max difference: 2.89

Top of value_iteration(), max difference: 2.2653

Top of value_iteration(), max difference: 1.935648

Top of value_iteration(), max difference: 1.66572639

Top of value_iteration(), max difference: 1.4497415721

Top of value_iteration(), max difference: 1.25418853297

Top of value_iteration(), max difference: 0.998954591375

Top of value_iteration(), max difference: 0.769139503728

Top of value_iteration(), max difference: 0.510518276155

Top of value_iteration(), max difference: 0.337118955482

Top of value_iteration(), max difference: 0.193325220838

Top of value_iteration(), max difference: 0.0315788407471

Done with value iteration

Running simulations...

6

Lake size: 5 x 5

Value iteration:

Mean cost: 7.3

Median cost: 7.1

Standard dev: 3.7

Simulations (run 1000 times):

Mean cost: 7.3

Median cost: 6.8

Standard dev: 4.1

Mean cost to sail across lake from (1, 1) to (4, 4): 8.5

5 UCT: Upper Con�dence bounds on Trees
Solving an MDP system using value iteration can become computationally inten-
sive on large examples (e.g. sailing on a lake of size 40 × 40) because each update
step necessarily reads and changes every element of the value and policy vectors.
An alternative approach is to useMonteCarlo planning. See Figure 2 for pseudo-

Python. �e algorithm alternates randomly between between trying new actions at
each state (in order to search for better policies) or using the current best policy to
improve the estimate of the policy. �e policy vector π is not explicitly computed.
Instead we have the state-action vector Q(s, a), the average seen cost (reward) of
taking action a when in state s. �e update line

new_average = old_average + (0.5)*(q - old_average)

has a bias of 0.5 instead of 1/n and this may need to be tuned for each application
of Monte Carlo planning. �ere are some subtleties to the implementation. See
Section 10 for source code.

�e UCT algorithm [4] just changes the way that actions are selected during a
rollout. �e algorithm used is called UCB, and described in the next section.

5.1 UCB: Upper Con�dence Bounds
Imagine that we have K gambling machines with arbitrary reward distributions P1,
. . . , PK . At each time step we can play any machine j that we choose, and receive a

7

reward according to the distribution Pj. We would like a strategy that maximises
our total reward over n plays. Since the distributions Pj are �xed but unknown, we
want to avoid sampling too many times from machines with low reward. In other
words, we have to balance exploration versus exploitation.

�e UCB1 strategy [2] is:

1. Play each machine once.

2. Play machine j that maximises x̄ j +
√
2 ln n
n j
where x̄ j is the average reward

frommachine j, machine j has been played n j times so far, and n is the total
number of plays so far.

�e x̄ j termgives preference tomachines that have performedwell in past plays,
while the

√
2 ln n/n j term gives preference to machines that have not been played

many times so far, relative to ln n.
Write µ j for the mean of distribution Pj. Obviously the best possible strategy is

to only play the machine with the maximum mean µ∗ = max j µ j. Figure 3 shows
best and actual reward for some simulations using the UCB1 strategy. See Section 9
for Python source code. �e regret is the lost reward due to not having played the
optimal machine at each step:

nµ∗ − µ j

K
∑
j=1

E(Tj(n))

where Tj(n) is the number of times that machine j has been played a�er n plays.
Importantly, the regret can be bounded to be logarithmic in the number of plays
so far:

�eorem 5.1 ([2]). For all K > 1, if policy UCB1 is run on K machines having ar-
bitrary reward distributions P1, . . . , PK with support in [0, 1] then its expected regret
a�er n plays is at most

⎡⎢⎢⎢⎢⎣
8 ∑
i∶µ i<µ∗

(ln n
∆i

)
⎤⎥⎥⎥⎥⎦
+ (1 + π2

3
)
⎛
⎝

K
∑
j=1
∆ j

⎞
⎠

where ∆i = µ∗ − µi .

Figure 4 shows the result of some simulations with K = 10 machines and �xed
reward distributions.

8

5.2 UCT
�e UCT algorithm is the same as Monte Carlo planning except that UCB is used
to select the action at each tree node. To do this we have to keep track of the average
cost so far (i.e. up to time t) of taking action a from state s, denoted Qt(s, a). We
also track Ns(t), the number of times that state s has been visited up to time t. If
we are at a tree node s then the action is chosen using the UCB rule

a∗ = argmax
a∈A

⎧⎪⎪⎨⎪⎪⎩
Qt(s, a) + α

¿
ÁÁÀ lnNs(t)

Ns,a(t)

⎫⎪⎪⎬⎪⎪⎭
. (1)

where α is a constant that has to be chosen empirically. A badly chosen α can have
a huge e�ect on the convergence of the algorithm.
See Section 11 for Python source code that uses UCT to solve the sailing prob-

lem.1

5.3 UCT on the sailing problem
First we used value iteration to solve the sailing problem on lakes of size 5 × 5,
10 × 10, 20 × 20, and 30 × 30, with ε = 0.01 (solving just the 20 × 20 instance took
about 5 hours on a 2.5Ghz Intel Xeon server). �e optimal value and policy vectors
V∗ and π∗ are available in the pickled Python format as lake_5.pkl, lake_10.pkl,
lake_20.pkl, and lake_30.pkl.
Next, we chose 20 randompoints (excluding the target point). For each of these

states s, we ran the Monte Carlo and UCT algorithm until the estimated cost for
sailing from s to the target state was within 0.1 of the optimal value V∗(s). A good
measure of the e�ciency of a Monte Carlo type of planning algorithm is the total
number of samples taken from the underlying MDP’s generative model. Figure 5
shows the number of samples required to get the estimated error to within the
bounds speci�ed.

6 What else?
�ere are a few factors that have to be chosen by hand in sailing_uct.py. If we are
working on a huge problem, where value iteration isn’t feasible, how do we know

1I asked the authors of [4] for their full list of parameter values and source code but got no reply.
If anyone improves my code I will be happy to update this document and give a reference or URL.

9

if we are converging to the optimal solution? �e 0.1 factor for the Q value update
step in Section 5 is meant to decay to zero if we want convergence. But at what rate?
Using something like 1/n works badly on the sailing domain with lake sizes up to
20 × 20.
Also, there are many ways to improve the UCT algorithm, for example com-

bining online and o�ine data to speed up convergence of the Q values: [3].

10

def select_action(state):

if random() < 0.01:

return random_action(state)

else:

return best_action(state)

def search(state):

if state == terminal: return 0

action = select_action(state)

new_state, cost = simulate_action(state, action)

state_visit_counts[(state)] += 1

state_action_counts[(state, action)] += 1

try:

old_average = Q[(state, action)]

n = state_action_counts[(state, action)]

new_average = old_average + (0.5)*(q - old_average)

except KeyError:

new_average = q

self.Q[(state, action)] = new_average

return q

def monte_carlo_planning(initial_state):

while True:

search(initial_state)

Figure 2: Pseudo-Python for Monte Carlo planning.

11

0 500 1000 1500 2000
number of plays

0

200

400

600

800

1000

1200

1400

1600

re
w

a
rd

UCB1: best vs actual reward

best possible reward
simulated reward

Figure 3: Comparing best and actual reward using the UCB1 strategy with 10 ma-
chines. See Section 9 for details on the machines’ reward distributions.

0 500 1000 1500 2000
number of plays

0

500

1000

1500

2000

2500

3000

re
g
re

t

UCB1: regret and upper bound

regret
bound on regret

Figure 4: Regret and upper bound on regret given by�eorem 5.1

12

0 100 200 300 400 500 600 700 800 900
grid size

0

50000

100000

150000

200000

250000

300000

n
u
m

b
e
r

o
f

sa
m

p
le

s

Number of samples to achieve error < 0.1 for sailing problem

Monte Carlo planning
UCT

Figure 5: Performance of plainMonteCarlo planning andUCTon the sailing prob-
lem.

13

7 iPod value iteration
Here is ipod_mdp.py, also available at
http://carlo-hamalainen.net/stuff/mdpnotes

-*- coding: utf-8 -*-

#***

Copyright (C) 2009 Carlo Hamalainen <carlo.hamalainen@gmail.com>,

#

Distributed under the terms of the GNU General Public License (GPL)

#

This code is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

#

The full text of the GPL is available at:

#

http://www.gnu.org/licenses/

#***

"""

A Markov Decision Process (MDP) for the iPod problem

described at http://norvig.com/ipod.html

"""

import random

import sys

def value_iteration(N, T, target, epsilon = 0.001):

The possible actions from any state:

actions = ['sequential', 'shuffle']

Transition probabilities:

transitions[s, a, w] = probability of moving from s to w by action a.

transitions = {}

14

http://carlo-hamalainen.net/stuff/mdpnotes

Sequential strategy gets us to the target directly.

for s in range(N):

for w in range(N):

if w == target:

transitions[s, 'sequential', w] = 1.0

else:

transitions[s, 'sequential', w] = 0.0

The Shuffle strategy takes us to any state with equal

probability.

for s in range(N):

for w in range(N):

transitions[s, 'shuffle', w] = 1.0/N

Cost of each action from any state s.

cost = {}

for s in range(N): cost[s, 'sequential'] = abs(target - s)

for s in range(N): cost[s, 'shuffle'] = T

V1 = [0] * N

V2 = [1] * N

policy = ['shuffle'] * N

while max([abs(V1[i] - V2[i]) for i in range(N)]) > epsilon:

for s in range(N):

min_action = actions[0]

min_action_cost = cost[s, actions[0]] \

+ sum([transitions[s, actions[0], w]*V1[w] for w in range(N)])

for a in actions:

this_cost = cost[s, a] + sum([transitions[s, a, w]*V1[w] \

for w in range(N)])

if this_cost < min_action_cost:

min_action = a

min_action_cost = this_cost

15

V2[s] = min_action_cost

policy[s] = min_action

V1, V2 = V2, V1 # swapsies

try:

p = min([s for s in range(N) if policy[s] == 'sequential']) - 1

q = min([s for s in range(N) if V2[s] == target - s]) - 1

fixme: fails if epsilon is too large, ie. our policy vector isn't

optimal.

assert p == q

p = min([s for s in range(N) if V2[s] == target - s]) - 1

assert policy[p] == 'shuffle'

assert V2[p] != target - p

assert policy[p + 1] == 'sequential'

assert V2[p + 1] == target - (p + 1)

assert policy[p + 2] == 'sequential'

assert V2[p + 2] == target - (p + 2)

except ValueError:

we must have come in with a high epsilon value and didn't get

a 'correct' value/policy vector.

p = None

return V2, policy, p

def simulate(N, T, initial_state, target, policy):

s = initial_state

total_cost = 0

while s != target:

if policy[s] == 'sequential':

total_cost += abs(target - s)

s = target

16

else: # policy[s] == 'shuffle'

total_cost += T

s = random.randrange(N)

return total_cost

def average_simulation(N, T, policy):

The target state:

target = N/2

nr_iters = 1000*N

return sum([simulate(N, T, random.randrange(N), target, policy) \

for _ in range(nr_iters)])/float(nr_iters)

def usage():

print

print "Usage:"

print "$ python ipod_mdp.py <N> <T>"

print

sys.exit(0)

if __name__ == "__main__":

if len(sys.argv) == 1: usage()

if len(sys.argv) == 3:

N = int(sys.argv[1])

T = float(sys.argv[2])

V, policy, p = value_iteration(N, T, N/2)

away = N/2 - p

assert policy[N/2 - (away - 1)] == 'sequential'

assert policy[N/2 - (away)] == 'shuffle'

assert policy[N/2 - (away + 1)] == 'shuffle'

17

mean_V = float(sum(V))/float(len(V))

mean_sim = average_simulation(N, T, policy)

print "mean(V) =", mean_V

print "mean (simulation):", mean_sim

print "difference:", mean_V - mean_sim

print "shuffle when:", away, "or more away"

sys.exit(0)

usage()

18

8 Value iteration for sailing
Here is sailing.py, also available at
http://carlo-hamalainen.net/stuff/mdpnotes

-*- coding: utf-8 -*-

#***

Copyright (C) 2009 Carlo Hamalainen <carlo.hamalainen@gmail.com>,

#

Distributed under the terms of the GNU General Public License (GPL)

#

This code is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

#

The full text of the GPL is available at:

#

http://www.gnu.org/licenses/

#***

For debugging, put these lines somewhere to drop into an ipython shell:

#import IPython

#IPython.Shell.IPShell(user_ns=dict(globals(), **locals())).mainloop()

To profile, put these in __main__():

#import cProfile

#cProfile.run('thing_to_run()')

import math

import pickle

import random

import sys

from scipy import arange, log, logn

from scipy.stats import rv_discrete

19

http://carlo-hamalainen.net/stuff/mdpnotes

def mean(L): return sum(L)/(1.0*len(L))

def stddev(values, meanval=None):

copied from http://aima.cs.berkeley.edu/python/utils.html

and fixed the denominator.

"""The standard deviation of a set of values.

Pass in the mean if you already know it."""

if meanval == None: meanval = mean(values)

return math.sqrt(sum([(x - meanval)**2 for x in values]) / (len(values)))

def median(values):

copied from http://aima.cs.berkeley.edu/python/utils.html

"""Return the middle value, when the values are sorted.

If there are an odd number of elements, try to average the middle two.

If they can't be averaged (e.g. they are strings), choose one at random.

>>> median([10, 100, 11])

11

>>> median([1, 2, 3, 4])

2.5

"""

n = len(values)

values = sorted(values)

if n % 2 == 1:

return values[n/2]

else:

middle2 = values[(n/2)-1:(n/2)+1]

try:

return mean(middle2)

except TypeError:

return random.choice(middle2)

def my_randint(n):

"""

Return a random integer from [0, n).

"""

return random.randint(0, n - 1)

20

def add_vector(x, y, v):

"""

Returns (x + v[0], y + v[1]).

EXAMPLES::

>>> add_vector(0, 0, (0, 1))

(0, 1)

>>> add_vector(0, 0, (-2, 1))

(-2, 1)

"""

return (x + v[0], y + v[1])

def check_probability_matrix(P):

"""

Rows must sum to 1 and no entry can be negative.

EXAMPLE::

>>> wind_array = [[0.4, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3], \

[0.4, 0.3, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0], \

[0.0, 0.4, 0.3, 0.3, 0.0, 0.0, 0.0, 0.0], \

[0.0, 0.0, 0.4, 0.3, 0.3, 0.0, 0.0, 0.0], \

[0.0, 0.0, 0.0, 0.4, 0.2, 0.4, 0.0, 0.0], \

[0.0, 0.0, 0.0, 0.0, 0.3, 0.3, 0.4, 0.0], \

[0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.3, 0.4], \

[0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.3]]

>>> check_probability_matrix(wind_array)

True

"""

for x in P:

if sum(x) != 1: return False

for y in x:

if y < 0: return False

21

return True

def abs_direction_difference(d1, d2):

"""

Absolute difference in directions.

EXAMPLES::

>>> abs_direction_difference(0, 1)

1

>>> abs_direction_difference(3, 2)

1

>>> abs_direction_difference(3, 5)

2

>>> abs_direction_difference(3, 7)

4

"""

assert d1 >= 0

assert d1 < 8

assert d2 >= 0

assert d2 < 8

x = abs(d1 - d2)

if x < 8 - x: return x

else: return 8 - x

def tack(boat_direction, wind_direction):

"""

The tack of the boat depends on the relative difference of

the boat's direction and the wind.

EXAMPLES::

>>> tack(0, 0)

'away'

22

>>> tack(0, 7)

'down'

>>> tack(0, 2)

'cross'

>>> tack(0, 3)

'up'

>>> tack(0, 4)

'into'

"""

assert boat_direction >= 0

assert boat_direction < 8

assert wind_direction >= 0

assert wind_direction < 8

d = abs_direction_difference(boat_direction, wind_direction)

if d == 0: return 'away'

if d == 1: return 'down'

if d == 2: return 'cross'

if d == 3: return 'up'

if d == 4: return 'into'

raise ValueError

def wind_on_left(boat_dirn, wind_dirn):

"""

Relative to the boat, is the wind blowing to the left of the boat?

"""

If the boat had been going north then we just need to check

if the wind direction is in [5, 6, 7]

w = wind_dirn - boat_dirn

while w < 0: w += 8

23

return w in [5, 6, 7]

def direction_vector(d):

"""

The direction 0 is north so we move by (0, 1) in cartesian

coordinates.

EXAMPLES::

>>> direction_vector(0) # north

(0, 1)

>>> direction_vector(6) # west

(-1, 0)

"""

assert d >= 0

assert d < 8

if d == 0: return (0, 1)

if d == 1: return (1, 1)

if d == 2: return (1, 0)

if d == 3: return (1, -1)

if d == 4: return (0, -1)

if d == 5: return (-1, -1)

if d == 6: return (-1, 0)

if d == 7: return (-1, 1)

class Sailing:

def __init__(self, lake_size):

self.gamma = 0.9 # discounting factor

self.lake_size = lake_size

Wind transition probabilities.

self.wind_array = [\

[0.4, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3], \

[0.4, 0.3, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0], \

[0.0, 0.4, 0.3, 0.3, 0.0, 0.0, 0.0, 0.0], \

24

[0.0, 0.0, 0.4, 0.3, 0.3, 0.0, 0.0, 0.0], \

[0.0, 0.0, 0.0, 0.4, 0.2, 0.4, 0.0, 0.0], \

[0.0, 0.0, 0.0, 0.0, 0.3, 0.3, 0.4, 0.0], \

[0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.3, 0.4], \

[0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.3] \

]

self.end_x = lake_size - 1

self.end_y = lake_size - 1

self.costs = { 'up':4, 'cross':3, 'down':2, 'away':1 }

self.wind_distribution = []

for i in range(len(self.wind_array)):

vals = [arange(len(self.wind_array[i])), self.wind_array[i]]

self.wind_distribution.append(rv_discrete(name='custm', \

values=vals))

def states(self):

"""

Instead of storing the states in a large list/dictionary, we

provide an iterator.

"""

for x in range(self.lake_size):

for y in range(self.lake_size):

for d in range(8):

for w1 in range(8):

for w2 in range(8):

yield (x, y, d, w1, w2)

def is_terminal(self, state):

return (state[0], state[1]) == (self.end_x, self.end_y)

def is_into(self, state, action):

try:

self.cost(state, action)

except KeyError:

25

return True

return False

def random_state(self):

w1 = my_randint(8)

while True: # we weren't sailing into the wind...

d = my_randint(8)

if tack(d, w1) != 'into': break

w2 = self.new_wind(w1)

while True:

state = (my_randint(self.lake_size), my_randint(self.lake_size), d, w1, w2)

if not self.is_terminal(state): break

return state

def stays_in_lake(self, state, action):

x, y, _, _, _ = state

x2, y2 = add_vector(x, y, direction_vector(action))

if x2 in range(self.lake_size) and y2 in range(self.lake_size):

return True

return False

def average_cost_of_transition(self, V, s, new_d):

x, y, _, _, w2 = s

x2, y2 = add_vector(x, y, direction_vector(new_d))

if not self.stays_in_lake(s, new_d): return None

this_cost = 0

We perform the local action

try:

26

this_cost += self.cost(s, new_d)

except KeyError:

don't sail into the wind...

return None

for w3 in range(8):

s_new = (x2, y2, new_d, w2, w3)

this_cost += self.gamma*self.transition_probability(s, s_new)*V[s_new]

return this_cost

def transition_probability(self, s1, s2):

"""

What is the probability of moving from state s1 to s2?

s1 = (x1, y1, _, w1, w2)

s2 = (x2, y2, d2, w2_2, w3)

The boat was at (x1, y1) and travelled to (x2, y2). Then it must

be the case that (x2, y2) = (x1, y1) + direction_vector(d2). If this

does not hold then the probability is 0.

If the previous wind direction of s2 does not match the new

wind direction of s1 then the probability is 0 (so we need

w2_2 == w2).

Finally, the probability of moving from s1 to s2 is just the

probability of the wind changing from w2=w2_2 to w3, which is

stored in the global variable wind_array.

>>> x1, y1 = 1, 1

>>> x2, y2 = 2, 1

>>> d1 = 0

>>> d2 = 2 # the direction that we just travelled

>>> w1 = 3

>>> w2 = 2

>>> w2_2 = w2

27

>>> lake_size = 5

>>> S = Sailing(lake_size)

>>> S.transition_probability((x1, y1, d1, w1, w2), \

(x2, y2, d2, w2_2, 1))

0.40000000000000002

>>> S.transition_probability((x1, y1, d1, w1, w2), \

(x2, y2, d2, w2_2, 0))

0.0

"""

x1, y1, _, w1, w2 = s1

x2, y2, d2, w2_2, w3 = s2

d_vec1, d_vec2 = direction_vector(d2)

The boat was at (x1,y1) and travelled in

direction d2 to arrive at (x2, y2).

if x2 != x1 + d_vec1: return 0

if y2 != y1 + d_vec2: return 0

The new wind direction for s1 must be the

previous wind direction of s2.

if w2 != w2_2: return 0

Now we just have the probability of going from

wind direction w2 to wind direction w3.

return self.wind_array[w2][w3]

def new_wind(self, w):

"""

The wind is currently blowing in direction w and it changes to a

new direction according to the matrix wind_array, which is encoded

by general probability distribution in wind_probability_space.

28

EXAMPLES::

>>> lake_size = 5

>>> S = Sailing(lake_size)

>>> S.new_wind(0) in range(8)

True

>>> S.new_wind(4) in range(8)

True

"""

#assert w in range(8)

#return self.wind_distribution[w].get_random_element()

return self.wind_distribution[w].rvs()

def cost(self, s, d):

"""

If we are in state s and we decide to travel in direction d, how

much will this cost? Note that the wind for this new leg is in the

last element of s.

EXAMPLES::

>>> x1, y1 = 1, 1

>>> x2, y2 = 2, 1

>>> d1 = 0

>>> d2 = 2

>>> w1 = 3

>>> w2 = 2

>>> s = (x1, y1, d1, w1, w2)

>>> lake_size = 5

>>> S = Sailing(lake_size)

>>> S.cost(s, 0)

3

>>> S.cost(s, 1)

2

"""

29

new_wind = s[-1]

return self.costs[tack(d, new_wind)]

def best_action(self, s, V):

"""

If we are in state s, use the value vector V to work out the

best direction to travel in and its estimated cost.

"""

x, y, d, w1, w2 = s

this is the end state

if self.is_terminal(s): return (-1, 0) # (no action, terminal cost)

Otherwise we have to loop through all possible actions

and find the one with the minimum cost.

min_d = None

min_d_cost = None

for new_d in range(8):

new_d_cost = self.average_cost_of_transition(V, s, new_d)

if new_d_cost == None: continue

if min_d is None:

min_d = new_d

min_d_cost = new_d_cost

elif new_d_cost < min_d_cost:

min_d = new_d

min_d_cost = new_d_cost

return (min_d, min_d_cost)

def value_iteration(self, epsilon):

V1 = {}

V2 = {}

policy = {}

30

for s in self.states():

V1[s] = 0

V2[s] = 10*epsilon

policy[s] = -1

if self.is_terminal(s):

V1[s] = 0

V2[s] = 0

while True:

max_diff = max([abs(V1[i] - V2[i]) for i in self.states()])

print "Top of value_iteration(), max difference:", max_diff

sys.stdout.flush()

if max_diff < epsilon: break

for s in self.states():

if self.is_terminal(s): continue

policy[s], V2[s] = self.best_action(s, V1)

V1, V2 = V2, V1

V = V2

V_avg = sum(V.values())/len(V)

V_stddev = stddev(V.values(), meanval = V_avg)

return V, policy, V_avg, V_stddev

def simulate(self, policy):

w1 = my_randint(8)

boat not facing into the wind

while True:

d = my_randint(8)

if tack(d, w1) != 'into': break

31

w2 = self.new_wind(w1)

current_state = (my_randint(self.lake_size), my_randint(self.lake_size), d, w1, w2)

this_cost = 0

factor = 1.0

while not self.is_terminal(current_state):

new_d = policy[current_state]

this_cost += factor*self.cost(current_state, new_d)

x2, y2 = add_vector(current_state[0], current_state[1], \

direction_vector(new_d))

w3 = self.new_wind(current_state[-1])

current_state = x2, y2, new_d, current_state[-1], w3

factor *= self.gamma

return this_cost

def run_simulations(self, policy, nr_sims):

sims = []

for i in range(1, nr_sims + 1):

sims.append(self.simulate(policy))

sims_avg = sum(sims)/len(sims)

sims_stddev = stddev(sims, meanval = sims_avg)

return sims, sims_avg, sims_stddev

def sample_next_state(self, state, action):

"""

Use the generative model of S to find the next state given that

we are in state and take action action.

"""

if self.is_terminal(state):

32

return None

cost = self.cost(state, action)

x2, y2 = add_vector(state[0], state[1], direction_vector(action))

w3 = self.new_wind(state[-1])

new_state = x2, y2, action, state[-1], w3

return new_state, cost

def value_iteration_example():

lake_size = 5

S = Sailing(lake_size = lake_size)

V, policy, V_avg, V_stddev = S.value_iteration(epsilon = 0.1)

print "Done with value iteration"

Run a few thousand simulations:

nr_sims = 1000

print "Running simulations..."

sims, sims_avg, sims_stddev = S.run_simulations(policy, nr_sims)

print

print "Lake size: %d x %d" % (lake_size, lake_size)

print

print "Value iteration:"

print " Mean cost: %.1f" % V_avg

print " Median cost: %.1f" % median(V.values())

print " Standard dev: %.1f" % V_stddev

print

print "Simulations (run %d times):" % nr_sims

print " Mean cost: %.1f" % sims_avg

print " Median cost: %.1f" % median(sims)

print " Standard dev: %.1f" % sims_stddev

print

v_11 = 0.0

v_11_count = 0

33

for s in V.keys():

if (s[0], s[1]) == (1, 1):

v_11_count += 1

v_11 += V[s]

print "Mean cost to sail across lake from (1, 1) to (%d, %d): %.1f" \

% (S.end_x, S.end_y, (v_11/v_11_count))

def save_optimal_solution(lake_size):

S = Sailing(lake_size)

V, policy, V_avg, V_stddev = S.value_iteration(0.01)

lake_filename = "lake_" + str(lake_size) + ".pkl"

output = open(lake_filename, 'wb')

pickle.dump(V, output)

pickle.dump(policy, output)

pickle.dump(V_avg, output)

pickle.dump(V_stddev, output)

output.close()

if __name__ == "__main__":

if len(sys.argv) == 2:

eval(sys.argv[1])

else:

value_iteration_example()

34

9 UCB
Here is ucb.py, also available at
http://carlo-hamalainen.net/stuff/mdpnotes

-*- coding: utf-8 -*-

#***

Copyright (C) 2009 Carlo Hamalainen <carlo.hamalainen@gmail.com>,

#

Distributed under the terms of the GNU General Public License (GPL)

#

This code is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

#

The full text of the GPL is available at:

#

http://www.gnu.org/licenses/

#***

import pylab

from scipy import arange, log, pi, sqrt

from scipy.stats import rv_discrete

def avg(L): return sum(L)/(1.0*len(L))

def make_scipy_rv(L):

vals = [arange(len(L)), L]

return rv_discrete(name='custm', values=vals)

"""

I want to have some number of machines, and the j-th machine has a spike

in the distribution at the j-th point.

"""

35

http://carlo-hamalainen.net/stuff/mdpnotes

nr_machines = 10

machine_distributions = []

means = []

max_mean = None

for j in range(nr_machines):

d = [1] * nr_machines

d[j] = 20

normalise d

d_sum = float(sum(d))

d = [float(x/d_sum) for x in d]

machine_distributions.append(make_scipy_rv(d))

means.append(sum([x*d[x]/nr_machines for x in range(len(d))]))

max_mean = max(means)

def play_machine(k):

"""

Play the k-th machine.

"""

return machine_distributions[k].rvs()/(1.0*nr_machines)

def best_mu(): return max_mean

def mu(k):

"""

Expected reward of machine k.

"""

return means[k]

def run_ucb1(n):

"""

36

Perform n plays using the UCB1 strategy.

"""

total_nr_plays = 0

nr_plays = [0] * nr_machines

average_reward = [0] * nr_machines

for j in range(nr_machines):

average_reward[j] = play_machine(j)

nr_plays[j] += 1

total_nr_plays += 1

total_reward = 0

for _ in range(n):

max_j = None

max_xj = None

for j in range(nr_machines):

xj = float(average_reward[j] + \

sqrt(2.0*log(total_nr_plays)/nr_plays[j]))

if max_j is None:

max_j = j

max_xj = xj

elif xj > max_xj:

max_j = j

max_xj = xj

reward = play_machine(max_j)

total_reward += reward

average_reward[max_j] = (nr_plays[j]*average_reward[max_j] + reward) \

/(nr_plays[j] + 1)

nr_plays[j] += 1

total_nr_plays += 1

37

best possible reward, our reward, regret, upper bound on expected regret.

return (total_nr_plays*best_mu(),

total_reward,

total_nr_plays*best_mu() - total_reward,

8*sum([float(log(total_nr_plays)/(best_mu() - mu(j))) \

for j in range(nr_machines) if mu(j) < best_mu()]) \

+ float(1 + pi**2/3) + sum([best_mu() - mu(j) \

for j in range(nr_machines)]))

runs = [(n, run_ucb1(n)) for n in [10, 20, 100, 1000, 2000]]

xrange = [x[0] for x in runs]

best_possible_data = [x[1][0] for x in runs]

total_reward_data = [x[1][1] for x in runs]

regret_data = [x[1][2] for x in runs]

regret_bound_data = [x[1][3] for x in runs]

pylab.plot(xrange, best_possible_data, '-o', \

xrange, total_reward_data, '-^')

pylab.xlabel('number of plays')

pylab.ylabel('reward')

pylab.title('UCB1: best vs actual reward')

pylab.legend(("best possible reward", "simulated reward"), loc='upper left')

pylab.grid(True)

pylab.savefig("best_and_total_reward.pdf")

pylab.close()

pylab.plot(xrange, regret_data, '-o', \

xrange, regret_bound_data, '-^')

pylab.xlabel('number of plays')

pylab.ylabel('regret')

pylab.title('UCB1: regret and upper bound')

pylab.legend(("regret", "bound on regret"), loc='upper left')

pylab.grid(True)

pylab.savefig("regret_and_bound.pdf")

38

10 Sailing MCT
Here is sailing_mc.py, also available at
http://carlo-hamalainen.net/stuff/mdpnotes

-*- coding: utf-8 -*-

#***

Copyright (C) 2009 Carlo Hamalainen <carlo.hamalainen@gmail.com>,

#

Distributed under the terms of the GNU General Public License (GPL)

#

This code is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

#

The full text of the GPL is available at:

#

http://www.gnu.org/licenses/

#***

For debugging, put these lines somewhere to drop into an ipython shell:

#import IPython

#IPython.Shell.IPShell(user_ns=dict(globals(), **locals())).mainloop()

To profile, put these in __main__():

#import cProfile

#cProfile.run('thing_to_run()')

from sailing import *

from random import random

from scipy import log, sqrt

from incdict import IncDict

class SailingPlanner(Sailing):

39

http://carlo-hamalainen.net/stuff/mdpnotes

def __init__(self, lake_size):

Sailing.__init__(self, lake_size)

def random_action(self, state):

possible_actions = []

for action in range(8):

if self.is_into(state, action): continue

if not self.stays_in_lake(state, action): continue

possible_actions.append(action)

assert len(possible_actions) > 0

return possible_actions[my_randint(len(possible_actions))]

def tree_policy(self, state):

return self.best_Q_value(state)[0]

def select_action(self, state):

if random() < 0.01:

return self.random_action(state)

action = self.tree_policy(state)

if action is None: action = self.random_action(state)

return action

def search_init(self, initial_state):

self.nr_samples = 0

self.initial_state = initial_state

keys: state

values: how many times we have visited this state during the

searches.

self.state_visit_counts = IncDict()

40

keys: (state, action) tuples

values: how many times we have taken 'action' from 'state'

self.state_action_counts = IncDict()

keys: (state, action) tuples

values: average cost of taking 'action' from 'state'.

self.Q = {}

def search(self, state, depth = 0):

if self.is_terminal(state): return 0

action = self.select_action(state)

new_state, cost = self.sample_next_state(state, action)

if random() < 1.0/(self.state_visit_counts[(state)] + 1):

try: q = cost + self.gamma*self.Q[(new_state, action)]

except KeyError: q = cost + self.gamma*self.V_approx[new_state]

else:

q = cost + self.gamma*self.search(new_state, depth + 1)

assert q != 0

self.state_visit_counts[(state)] += 1

self.nr_samples += 1

self.state_action_counts[(state, action)] += 1

try:

old_average = self.Q[(state, action)]

n = self.state_action_counts[(state, action)]

#new_average = old_average + (1.0/n)*(q - old_average)

new_average = old_average + (0.5)*(q - old_average)

except KeyError:

new_average = q

self.Q[(state, action)] = new_average

return q

def best_Q_value(self, state):

41

best_avg = None

best_action = None

for action in range(8):

try:

average_cost = self.Q[(state, action)]

except KeyError:

continue

assert average_cost != 0

if best_avg is None or average_cost < best_avg:

best_avg = average_cost

best_action = action

return best_action, best_avg

##

def sailing_mc_planner(lake_size, V_optimal, V_approx, initial_state, max_nr_samples):

S = SailingPlanner(lake_size)

S.V_approx = V_approx

S.search_init(initial_state)

S.search(initial_state)

optimal_cost = V_optimal[initial_state]

while True:

_, min_cost = S.best_Q_value(initial_state)

error = abs(min_cost - optimal_cost)

if error < 0.1: break

q = S.search(initial_state)

42

if S.nr_samples > max_nr_samples:

return None

return S.nr_samples

43

11 UCT
Here is sailing_uct.py, also available at
http://carlo-hamalainen.net/stuff/mdpnotes

-*- coding: utf-8 -*-

#***

Copyright (C) 2009 Carlo Hamalainen <carlo.hamalainen@gmail.com>,

#

Distributed under the terms of the GNU General Public License (GPL)

#

This code is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

#

The full text of the GPL is available at:

#

http://www.gnu.org/licenses/

#***

For debugging, put these lines somewhere to drop into an ipython shell:

#import IPython

#IPython.Shell.IPShell(user_ns=dict(globals(), **locals())).mainloop()

To profile, put these in __main__():

#import cProfile

#cProfile.run('thing_to_run()')

from sailing import *

from random import random

from scipy import log, sqrt

from incdict import IncDict

from sailing_mc import SailingPlanner

44

http://carlo-hamalainen.net/stuff/mdpnotes

class SailingUCT(SailingPlanner):

def random_action_of_untried(self, state):

possible_actions = []

for action in range(8):

if self.is_into(state, action): continue

if not self.stays_in_lake(state, action): continue

if self.Q.has_key((state, action)): continue

possible_actions.append(action)

if len(possible_actions) == 0: return None

return possible_actions[my_randint(len(possible_actions))]

def select_action_uct(self, state):

If there is an untried action, give that a go.

action = self.random_action_of_untried(state)

if action is not None: return action

uct_best = None

uct_best_action = None

for action in range(8):

if not self.Q.has_key((state, action)): continue

average_reward = -1.0*self.Q[(state, action)]

assert average_reward != 0

n_s_a = self.state_action_counts[(state, action)]

n_s = self.state_visit_counts[(state)]

uct_factor = 15.0

this_val = average_reward + uct_factor*sqrt(log(n_s)/n_s_a)

if this_val > uct_best:

45

uct_best = this_val

uct_best_action = action

return uct_best_action

def tree_policy(self, state):

return self.select_action_uct(state)

##

def random_state(S):

w1 = my_randint(8)

while True: # we weren't sailing into the wind...

d = my_randint(8)

if tack(d, w1) != 'into': break

w2 = S.new_wind(w1)

while True:

state = (my_randint(S.lake_size), my_randint(S.lake_size), d, w1, w2)

if not S.is_terminal(state): break

return state

def sailing_uct_planner(lake_size, V_optimal, V_approx, initial_state, max_nr_samples):

S = SailingUCT(lake_size)

S.V_approx = V_approx

S.search_init(initial_state)

S.search(initial_state)

optimal_cost = V_optimal[initial_state]

while True:

_, min_cost = S.best_Q_value(initial_state)

error = abs(min_cost - optimal_cost)

if error < 0.1: break

46

q = S.search(initial_state)

if S.nr_samples > max_nr_samples:

return None

return S.nr_samples

References
[1] �e convergence of a general value iteration process. http://jmlr.csail.

mit.edu/papers/volume3/szita02a/html/node21.html. 3

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2):235–256, May 2002. 5.1,
5.1

[3] Sylvain Gelly and David Silver. Combining online and o�ine knowledge in
uct. In ICML ’07: Proceedings of the 24th international conference on Machine
learning, pages 273–280, New York, NY, USA, 2007. ACM. 6

[4] Levente Kocsis and Csaba SzepesvÃąri. Bandit based monte-carlo planning.
In In: ECML-06. Number 4212 in LNCS, pages 282–293. Springer, 2006. 5, 1

[5] Peter Norvig. Doing the martin shu�e (with your ipod). http://norvig.
com/ipod.html. 2

[6] Robert J. Vanderbei. Sailing strategies: An application involving stochas-
tics, optimization, and statistics (sos). http://www.orfe.princeton.edu/
~rvdb/sail/sail.html. 4

47

http://jmlr.csail.mit.edu/papers/volume3/szita02a/html/node21.html
http://jmlr.csail.mit.edu/papers/volume3/szita02a/html/node21.html
http://norvig.com/ipod.html
http://norvig.com/ipod.html
http://www.orfe.princeton.edu/~rvdb/sail/sail.html
http://www.orfe.princeton.edu/~rvdb/sail/sail.html

	Introduction
	iPod example
	Value iteration
	Value iteration for the iPod example

	Sailing
	Example of sailing

	UCT: Upper Confidence bounds on Trees
	UCB: Upper Confidence Bounds
	UCT
	UCT on the sailing problem

	What else?
	iPod value iteration
	Value iteration for sailing
	UCB
	Sailing MCT
	UCT

