
The CURRY Chip

John D. Ramsdell*
The MITRE Corporation

Bedford, MA 01730

A b s t r a c t

The CURRY chip is • ¢ombin•tor reduction machine
in VLSI. Normal order evaluation is implemented
using a pointer reversal scheme that stores the stack
in the celia representing the function. Program eval-
uation maps an input stream to an output stream,
Methods used to write el•able programs for the chip
are given, along with experience gained using super
combinators.

1 I n t r o d u c t i o n

Turner [Tur79b] implemented a functional program-
ruing langu~e b u e d on combin•tors, • small finite
set of functions that form the basis for defining all
control structures in his language. HIS system can be
~ e d to represent functions that compute numbers in
a form in which all bound variables are removed. The
absence of variables allows an extremely simple mode
of function ewaJu•tion.

The combin•tor programming t /s tem des~ibed
within builds on the above work by demonstrating
a system that can be implemented in VLSI, and
which executes interesting programs, such as • corn-
prier that translates abstractions into combinatore.
A novel feature of the VLSI implementation is an
evaluation method that requires no additional stor-
age for an evaluation stack. This method is equally

"$upportmi by MITRE llt&D 90~J0.

Permission to copy without fee all or part of this material is granted
provided that the copies are not rode or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requ/res a fee and/or •pectic
perm!~sion.

© 1986 ACM 0-89791-200-4/86/0800-0122 75¢

useful in software implementations of combinator re-
duction m~hlnes.

The paper is divided into two main topics. The
t int describes the VLSI implementation of • combi-
n•tor machine that has been fabricated using • sill-
con compiler. The second gives the experience gained
by writing • compiler of abstractions into combing-
tots for the CURRY chip, using • simulator. In
this paper, programs are denoted using the syntax of
the A-calcuins[Bar84, page 22], even though a slightly
more sophisticated notation was used in writing the
actual programs.

2 S e q u e n t i a l C o m b l n a t o r Ma-
ch ines

The CURRY chip implements a sequential combin~-
tor machine in silicon[RamS5]. Similar to many pre-
vions works, • sequential combinstor machine repre-
sents • function as • graph in computer memory and
the proce~ of evaluation conskts of overwriting func-
tions with simpler but equivalent repreeentations of
the functions. A novel handling of the stack, and the
selection of • fixed set of combinators that can fit on
• chip, diferentiste the CURRY chip from previous
efforts.

2.1 Combinators
A function is represented as one of the twelve corn-
bin•tots in Table I or as an application. The combi-
n•tors are atomic, but an •ppfic•tion is • pointer to
a pair of functions. The cell which contains the pair
d functions is divided into • head and • tail. The
cell represents the function obtained by applying the
function in the head to the one in the tail.

Comhinators direct the replacement of functions
by simpler but equivalent repreeent~tiom of functions
using the rules in Table 1. For example, the rule for

122

n .

I
J
Y
R
K
T
S'
C'
S
B
C
P

Az.l
Fix
Read
Azy.z
Azy.yz
Azy.S(Bzy)
Azy.C(Bzy)

Azyz.zzy
Azyz.zzy

Table 1: CURRY Chip Combinators

K states that the second argument is ignored and the
first is the value.

VxVy(Kzy) = - - .

The rule for K is implemented by overwriting
(Kzy) by (Iz) as shown in Figure I. Figures 2 and 3
give the rules for combinators S and Y respectively.
See [Tur79b] for more on these rules.

2 .2 E v a l u a t i o n

Reduction is the process of replacing a function's rep-
resentation by a simpler, but equivalent represent&-
tion. Normal order evaluation I is the name for the
order in which applications are reduced. Roughly
speaking, functions are given their arguments uneval-
uated in this order. This order may be implemented
with the following evaluation algorithm: When a
combinator is in the head of the application being
reduced, use the rule given in Table 1. When the
head of the application contains another application,
recursively reduce the head. If the result of such a
reduction is a combinator, use the rule given in Ta-
ble I. Otherwise, recursively reduce the head again.
The reduction of the application is complete when no
rules apply.

When the reduction of an application leads to a re-
quest to reduce its function part, a stack is often used
to store the original application. CURRY is unique
in storing the stack in the cells that are on the stack.
Motivated by [SW67], the idea is an extension of the
method used to evaluate strict functions in [SCN84].

Normal order evaluation is implemented by main-
t~ining two pointers, /#~ and stack. ~ a points to
the function being evaluated, and stack points to the
stack which contains the arguments of the function.

*More precisely, head normal order evaluation.

The stack is a linked list of cells in which the func-
tion part contains a pointer to the rest of the stack.
When fun points to a combinator, the arguments to
the combinator are obtained from stack and the com-
binator's rule is applied, resulting in new values for
fun and stack. Functions are often popped from the
stack at this time. When/un points to an application,
the function part is put into fun, stack is put into the
function part, and "stack is made to point to the ap-
plication. As a result, the application is pushed onto
the stack. The applicatlon's function cell is used to
hold the stack. See Figure 4 for a step-by-step display
of the reduction of (S K I J) =~ J.

2 . 3 I n p u t a n d O u t p u t

Reduction of the function (RI) initiates a request
for an input bit. That function is replaced with
(PK(RI)) when the input is low, and (PJ(RI)) when
the input is high.

Output is obt~ned from a stream. A stream $ is
recursively defined to be a function of the form (PB $)
where B is K or J . The output is low when B is K
and high when 8 is J .

A program for the CURRY chip consists of con-
stants combined by function application. A program
is further restricted to those functions having a sig-
nature of a map from a stream to a stream. The
program is applied to (R/) to obtain the stream for
output. The top level loop for the CURRY chip in-
volves reducing the first element of the stream to K
or J , then replacing the stream by the next stream
and looping, as shown is Figure 5. Thus, the entire
evaluation process is driven by requests for output.

stream 4-- (fun (It I)) ;
loop

p r i n t (eval (head s t ream)) ;
8 t r e t n ~- (t a i l s t ream);

repeat.

Figure 5: CURRY Top Level Loop

3 H a r d w a r e S u p p o r t for Re-
d u c t i o n

3.1 Data Types
A function is represented as a 23-bit object with three
fields: a 21-bit data field, a lobit atom field, and an-
other 1-bit field used only by the garbage collector.
The atom field determines how the content of the data
field is to be interpreted. When the atom field is false,

123

before

I / ly l CI ~>

(K x y) - (Ix)

after

Figure 1: K Reduction

before

I/Izl

~/lyl

after

> bl I

(S x y z) . (x z (y z))

Figure 2: S Reduction

before after

Figure 3: Y Reduction

124

stack

fun

.L

(S K I J)

before pointer reversal

stack

fun

stack . t .

I
• f u g t N

NZ
>

(S K IJ)
after pointer reversal

The result of applying S

stack

fun

stuck

fun

i i J i ! oock I~> fun

(K J (I J)) after pointer reversal

e • u • ~ • emmam • e i m m • arums,

.L

J

I
• Use of K
I

} Result after pointer reversal and the use of I

(SKIJ)-J
Figure 4: Reduction via Pointer Reversal

125

the function is an application, and the data is an ad-
dress pointing to an application cell which contains
a pair of functions as shown in Figure 6. When the
atom field is true, the function is one of the combin~-
tons from Table 1, and the data field identifies which
combinator. Alternatively, the function is the stack
bottom symbol (.L). The codes for all atoms known
by the CURRY chip are given in Table 2. The atomic
functions are grouped into three categories based on
the number of arguments used during a reduction.

21 bits I bit I bit I bit

TAIL 'DATA UNUSED ATOM GC

Figure 6: An Application Cell

Atom Binary Value
.L 00000001
I 00010010
J 00100010
Y 01000010
R 10000010
K 00010100
T 00100100
S' 01000100
C 'w 10000100
8 00011000
B 00101000
C' 01001000
P I0001000

Table 2: Representation of atoms

The choice of the sises of the objects was motivated
by the following two considerations: The CURRY
chip has 22 + 2 . (addrem 8ise) pins; 21-bit addre~es
allow the use of a 64 pin case. 21-bit addresses allow
acce~ to 2 million 6-byte application ce]k. The half
million applicakion cells mind in the C implementation
of CURRY has been adequateJRam85).

Given byte addrem~ble memory, all parts of appli-
cations can be addressed using 24-bit addremes with
the restriction that the two low order bits must never
be simultaneously on. This amounts to reducing the
effective addre~ space by 25 percent and is caused
by the interest in 6 byte objects rather than 8 byte
objects.

Notice that only 25 bits of the 24-bit data words are
used. A pomible use of the remaining bit is for one-bit
reference counts. One-bit reference counts offer asim-
pie method for reducing the amount of garbage gener-
ated by evaluation [SCN84]. Cell, that are refes~nced
by only one pointer are marked with a flag. When

that pointer is discarded, the cell can be nfe ly re-
turned to free storage. When another pointer points
to the cell, the cell must be unmarked and can only be
returned to free storage using the usual garbage col-
lector. Unfortunately, the inclusion of one-bit refer-
ence counts would have made the sise of the CURRY
chip too large. Hardware memory that keeps track
of reference counts[WisS5] is another attractive op-
tion for reducing garbage collection costs as long the
CURRY chip is not slowed down by that memory.

Another po~ible use of the extra bit in a data word
is to differentiate between two types of pointers. In
addition to the existing type of pointer, one would
add a list pointer type. A cell pointed to by a list
pointer would be defined to have the same mean-
ing as a pointer to the pair of cells used to represent
(P~'Y'). List structure would then be represented us-
ing half the number of cells used before. The extra bit
could also be used to differentiate between two types
of atomic data, allowing the addition of an integer
data type. As before, adding more data types would
have made the sise of the CURRY chip too large.

8 . 2 C o m p u t i n g w i t h t h e C U R R Y
Chip

The CURRY chip k one of four units required to make
a computing system. The other units consist of mem-
ory, s garbage collector, sad t controller nsed to link
the system to the outside world. The four units are
tied together with • 24-bit address bus and a 24-bit
data bus. There is nothing special about the memory
except for the fact that 24-bit addresses with the two
low order bits on, are invalid. The garbage collector is
a chip fabricated in the Jams manner as the CURRY
chip and uses the algorithm given in [HSSBS0I for in
implementation of SCHEME[Cli85] on t cldp[SSS0].
The marking algorithm uasd is described in [SW67].
Its implementation is straightforward and de~ribed
in [Ramu].

The computing syJtem has two modes, and the con-
troller has a diferent task in both modes. When the
system is in RUN mode, the CURRY chip and the
garbage collector work to evaluate functions in mem-
ory, and the controller mediates the input and output
of the CURRY chip. When the system is in BOOT
mode, the CURRY chip and the garbage collector are
disabled, and the controller can be directed to load a
.memory image into the system or copy the existing
memory image out. Figure 7 gives a block diazrsm
~owing how the four units are counected to make a
computing system.

These is no bus contention in this desizn. When
the system is in BOOT mode, only the controller

126

e
J

Data Command Status

*: - . . - . . . - - .
_ _ L.._

/
~ 24 bits CONTROL

A - - - CURRY

GC ~quest GC

/ 22 bits GARBAGE COLLECTOR

i
• Q 24-bit address bus 24-bit data bus

24 bits MEMORY bits

Figure 7: A Complete Computint System

127

can use the bus. When the system is in RUN mode,
a simple protocol between the garbage collect6r and
the CURRY chip decides which will use the bus.

The interface to the outside world is via an 8-bit
bidirectional port, and some Command and status
signals. The controller accesses memory in one-byte
units and thus requires 24-bit addressing. Since the
garbage collector and the CURRY chip access mem-
ory in three-byte units, 22-bit addressing suffices.

The CURRY chip and the garbage collector chip
were synthesized using a silicon compiler called
MetaSyn~[Sou83]. The CURRY chip has about nine
thousand transistors, consumes 1.11 watts and is 5.6
mm by 7.5 mm when 3 micron nMOS technology is
used. The timing predictor conservatively estimated
a clocking frequency of 0.4 Mhs. The garbage col-
lector chip is 5.25 mm by 6.24 mm, consumes 0.91
watts, and clocks at a predicted frequency of 3.2
Mhs. It was also implemented in 3 micron nMOS.
Both chips have been received from fabrication, and
more than a majority of both chips have passed low
speed simulation tests. High speed tests of the chips
have yet to be completed, but we estimate a speed
of at least 20 thonsand reductions of applications per
second (RAPS) at 0.4 Mhs. Subsequent work has
demonstrated a chip design capable of running at 1.2
Mhs, corresponding to 60 thousand RAPS. A de-
tailed algorithmic description of the CURRY chip is
in [Ramsel.

4 S o f t w a r e

Two sizable programs have been written for the
CURRY chip. CCP is a compiler that translates ab-
stractions into combinators. LCP is a loader that
converts textual representations of combinators into
running programs.

A simulator of the CURRY chip has been coded in
C[KR78], and was used to test the above programs.
The simulator performed 18 thousand RAPS on a
VAX-11/780 as measured by CPU time, while pro-
riding enough memory for haft a million application
cells. The times used to calculate this speed include
the time spent in pointer reversal and garbage collec-
tion. When run on machines using a virtual memory
operating system, the garbage collector described in
[Cla76] proved superior compared with [SW67].

1. Az.eY'=~ (~q(Az.6c)~z.~r).
2. ~=.z=~ I.
s. A=.y =~ (Ky); variable y ~ z.
4. U¢) =~ ¢.
5. (J¢) =~ z.
6. (KEY') ~ ¢.
7. (T¢7) =~ (Te).
8. (S(K¢)) =~ (se) .
9. (S¢(K~)) =~ (C¢~').

lo. (S(S¢~)9) ~ (S ' ¢ ~) .
11. (B0 =~ Z.
12. (VET) =~ P.
xs. (B e 0 =~ ¢.
14. (S¢(KY)) =. (K(¢Y)).
15. (C(B¢~')) =~ (C'¢~}.

Table 3: Compilation Rules

4.1 Compi la t i on

Programs for the CURRY chip were written in a lan-
guage called CHURCH. A C program translates a
CHURCH source into abstractions. The program
CCP translates the abstractions into combinators.
Since CCP was written in the language CHURCH,
its performance, as estimated using the simulator, be-
came an interesting object of study.

The abstraction compilation algorithm simply im-
plements the rules in Table 3. Earlier rules take prece-
dence over later rules so there is no ambiguity in the
algorithm. Rules 1-3 are due to Sch~nfinkel[Sch24],
the first to show that variables could be eliminated
from abstractions. Rules 1-3, 8, 9, 13 and 14 com-
prise one formulation of Curry's algorithm [CF58,
page 190]. Turner further refined the compilation al-
gorithm by adding rules 10 and 15 [Tur79a]. This
algorithm produces expressions that are related to
the size of the input by a polynomial, whereas the
previous algorithms were exponential. Rules 11 and
13 implement r/-conversion, which is characterized by
the rule Az.£z =~ £ when z is not in £ [Bar84, page
160]. This rule is valid when all objects are functions
as is the case in CHURCH. Rule 11 was shown to
be important in one experiment. Removal of the rule
resulted in functions that were 30% larger. The re-
maining rules 4-7 and 123, implement some simple
conversions that reduce the size of the final function.

CCP starts with an environment in which a symbol
is bound to Y.

21~detsLogic, MscPitts, and MetaSyn are trademsrb of
Metalogi¢, Inc. 8Ruk 12 wta not always used in the reported ~perimants.

128

4 .2 Programming Methodology
As mentioned above, two nontrivial programs have
been written for the CURRY chip. CCP, the program
tha t translates abstractions into combinators, is 750
lines of code, the loader is 400 lines of code. Many
of the usual techniques for writing programs using
combinators were applied, such as the identification
of K with true, J with false and P with pair [Bar84,
pages 132-135]. Two programming practices proved
useful during the development of the programs. The
first practice allows the input stream to determine
how program units are composed, while the second
practice allows separate compilation.

4.2.1 Rou t ine s

While the overall signature of a CHURCH program is
a map from a stream to a stream, it was found useful
to divide the program into units called routines. The
signature of a routine is a map from some optional
input values, a stream and a continuation, giving a
stream. Henceforth, a finite part of a stream will
be called a string. The output associated with the
routine consists of concatenating the string produced
by the routine to the stream constructed by applying
the continuation to values computed by the routine,
continuations being used as described in [Sto77].

CCP contains many examples of routines. The
p r i n t e r routine takes a value to be printed, a stream,
and continuation. It concatenates a string, represent-
ing the value, to the result of applying the continu-
ation to the stream. The get_token routine takes
only a stream and a continuation. It produces no
string; instead its value is the result of applying the
continuation to both the token it produces and to the
new input stream. The p r i n t e r is an example of a
routine that does not compute a value. Hence, its
continuation is applied only to a stream. In contrast,
get_token is an example of a routine that computes
one value. Hence, its continuation is applied to that
value as well as a stream.

Routines can be used in the same manner as sub-
routines in other programming languages by follow-
ing the convention that the continuation represents a
return address. Routines can also be used to imple-
ment more general control structures[Wad85], since
continuations are not restricted to be functions de-
fined in the same section of a program that invokes
the routine.

4.2.2 Modules

Given the size of the programs CCP and LCP, it be-
came necessary to break these programs into units

that could be compiled separately, Each compilation
unit is a function represented by constants combined
by function application. Compilation units are com-
billed into a load~ble function by applying to the last
unit, the result of making the proceeding units into
a loadable function. The first compilation unit is re-
sponsible for combining the remaining units into a
running program. One useful method for combining
the units involves modules.

Modules are used to share common definitions.
Modules are functions that export their definitions
to other functions. Definitions within a module are
imported to a function by applying the module to the
function. An example of a module that exports ~, Y"
and ~ is ~/ . /£Y'~. A function that binds the three
imports to a, b and c is Aab¢.X.

4 . 3 S u p e r C o m b i n a t o r s

Super combinators were introduced in [Hug82] as a
means of speeding up combinator reduction. Instead
of using a fixed set of combinators in the representa-
tion of a function, the compiler carefully chooses the
set of combinators used for each function. These su-
per combinators promote sharing of common subex-
pressions and lessen the total number of reductions.

On machines that use a fixed set of combinators,
such as is the CURRY chip, one must further compile
the super combinators into the machine's fixed set of
combinators. One reduction of a super combinator is
replaced by many reductions, but the total number
of reductions could be lessened due to the offsetting
influence of increased sharing of common subexpres-
sions.

A super combinator version of CCP was created
by applying Hughes' algorithm to produce a super
combinator version of the abstractions. These were
compiled into combinators using the old version of
CCP, noting the number of reductions required to
perform the translation. The super combinator ver-
sion of CCP was loaded, and also used to compile
the super combinator version of the abstractions. As
expected, the super comhinator version required less
storage (2.5~) in the combinator machine. The su-
per combinator version of CCP required 11~ more
reductions to translate a compilation unit indepen-
dent of the size of the unit being compiled. Super
combinators appear not to be helpful for CCP on the
CURRY chip.

5 C o n c l u s i o n

A combinator programming system that has been im-
plemented in VLSI, has been shown to support the

129

writing of two sisable programJ for the hardware. A
novel feature of the CURRY chip is an evaluation
method that requires no additional storage for am
evaluation stack. Future planned topics of research
include the implementation of this system on a par-
allel processor[BCHPS6], while adjoining a nondeter-
minktic ¢ombinator[ODo85} to the existing fixed set,
which will allow the specification of interrupt driven
programs.

[Note added in proof: Kevin Greene[Gre85] re-
portl that D. A. Turner, A. Norman, and M. Scheevel
have also independently discovered the pointer rever-
sal evaluation scheme.]

6 A c k n o w l e d g e m e n t

I am grateful to Leonard Monk and Thom Brando for
their comments on an earlier draft. Keith Gerhardt,
Joel Harris and John Sawyer were helpful sources of
information on MITRE VLSI CAD took. John Ke-
meny, Jeff Siskind and Jay Southard made the use
of MetaSyn possible. DARPA funded Metal Oxide
Semiconductor Implementation System (MOSIS) fab-
ricated the chips.

R e f e r e n c e s

IBar841 H. P. Barendregt. The Lambda Calctdu,,
Its Sjntaz and Semantic,. North-Holland,
Amsterdam, revised edition, 1984.

[BCHPS6] T. J. Brando, H. E. T. Connell, J. D.
Harris, and M. J. Preile. A mmively
parallel artificial intelligence processor.
In Proceeding, of the Pkocniz Confer-
ence on Computer, and Communications,
pages 638-645, IEEE, Scott, dale, AZ,
March 1986.

[crssl Haakell Curry and Robert Feys. Comb/-
nator~ Log/e. Volume 1, North-Holland,
Anmterdam, 1958.

[Cla7e[Douglas W. Clark. An
el~cient lis~moving algorithm using con-
stant workspace. Communication, of the
ACA~, 19(6):352-354, June 1976.

Icli851 William Cringer ed. The Revimed Re-
v/fed Report on Schem¢ or An UnCom-
mon Lisp. AI-Memo 848, MIT, Cam-
bridge, MA, August 1985.

[o 851

i ssm0l

[HugSZ]

[KR7S]

lODo85]

[RamSS]

[Ramsel

[sch24]

[SON84]

[SouSs]

[ss801

[Sto77]

Kevin J. Greene. A ~Jzlly Lazy
Higher Order Purely Functional Program.
ruing Language with Reduction Semantics.
CASE 8505, Syracuse University, Syra-
cuse, NY, December 1985.

Jack Holloway, Guy Lewis Steele Jr., Ger-
ald Jay Sussman, and Alan Bell. The
SCHEME-79 Chip. AI-Memo 559, MIT,
Cambridge, MA, January 1980.

R. J. M. Hughes. Super combinators: a
new implementation method for applica-
tive languages. In 198P, ACM SVmpo-
8ium on LISP and Functional Program.
m/n0, pages 1-10, Pittsburg, PA, August
1982.

Brian W. Kernighan and Dennis M.
Ritchie. The C Proqramming Lanquage.
Prentice-Hall, Englewood Cliffs, N J, 1978.

Michael J. O'Donnell. Equational Logic
as a Programming Language. MIT Press,
Cambridge, MA, 1985. Chapter 19.

John D. Rsnmdell. Combinator Program.
ruing. Technical Report M85-43, MITRE
Corp., Bedford, MA, September 1985.

John D. Ramsdell. The CURRY Chip.
Technical Report M86-23, MITRE Corp.,
Bedford, MA, April 1986.

M. SchSnfinkel. Uber die bansteine der
mathematischen logik. Math. Annalen,
92(305), 1924.

W. R. Stoye, T. J. W. Clarke, and
A. C. Norman. Some practical meth-
ods for rapid combinator reduction. In
1984 ACM S~mpoJium on LISP and
Functional Programming, pages 159-160,
Austin, TX, August 1984.

Jay R. Southard. MacPitts: an approach
to silicon compilation. Computer Maga-
zine, 16(12):74-82, December 1983.

Guy Lewis Steele Jr. and Gerald Jay Sun-
man. Design of a LISP-bued micropro-
cessor. Communications of the ACM,
23(11):628--645, November 1980.

Joseph E. Stoy. Denotational Semantic,:
The Seott-Strachey Approach to Program-
ming Language Theorv. MIT Press, Cam-
bridge, MA, 1977.

130

I

ISWe]

[Tur79~,]

l'r,-'++bl

lW,,,a851

lW Bsl

H. Schorr and W. M. Waite. An effi-
cient machine-independent procedure for
garb*ge collection in various list struc-
tures. Commt~nicatio~ o/ the ACM,
10(8):501-506, August 1967.

D. A. Turner. Another algorithm for
bracket abstraction. The Journal o/ 8ym-
boise Logic, 44(2):267-270, June 1979.

D. A. Turner. A new implements-
tion technique for applicstive languages.
Bo.ftware--Pructice and Ezper~ence, 9:31-
49, 1979.

Philip Wadler. How to replace failure by
a list of successes. In ~nctional Program.
m~ng Langsage# a~d Computer A~Ai.
te©ture, p&gu U3-127, Springer-Verl&g~
Bexlin, 1985.

D. S. Wise. Design for a multiproceuing
heap with on-bosrd reference counting. In
~ct iona[P~grumming ~nguagea a~d
Compstzv A~hitectuve, pages 289-303,
Springer-Verlag, Berlin, 1985.

131

