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The Slutsky effect, as understood by many economists, is described in the
following quote from Barnett (2006):

If the variables that were taken to represent business cycles were
moving averages of past determining quantities that were not se-
rially correlated either real-world moving averages or artificially
generated moving averages then the variables of interest would
become serially correlated, and this process would produce a pe-
riodicity approaching that of sine waves.

To demonstrate this effect we take a sequence of independent identically
distributed random variables with mean p and variance o, compute a moving
average, and look for oscillatory behaviour. (The example that follows is
similar to Royama p. 131.)

Suppose that u; is a sequence of independent identically distributed ran-
dom variables . Here we generate 1000 samples, shown in Figure 1.

set_random_seed (0)

def avg(L):
return sum(L)/(1.0xlen(L))

def variance(L):
mu = avg(L)
return avg([(x - mu)**2 for x in L])



nr_samples = 1000
N =10 # u_i is in [0, 1, ..., N - 1]

U = [randrange(N) for _ in range(nr_samples)]

U_mu = avg(range(N))
U_var = variance(range(N))
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Figure 1: First 100 points from sequence ;.

There is no trend nor systematic behaviour of the series. We can check
this by calculating the autocorrelation R(t):

E((ui — p) (wire — 1))
R(t) = 5 )
o
The autocorrelation ranges between —1 and 1, meaning perfectly anti-correlated
and perfectly correlated, respectively.

def autocorrelation(L, t):

Biased estimator of the autocorrelation.
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mu = avg(L)

return avg([(L[i] - mw)*(L[i+t] - mu)
for i in range(len(L) - t)])/variance(L)

t_max = 20

U_ac = [autocorrelation(U, t) for t in range(t_max)]
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Figure 2: Autocorrelation of the sequence wu;.
This is as expected. In Figure 2 We see that R(0) = 1 because any
sample is autocorrelated with itself, and R(t) is around 0 for all ¢ > 0 since

the samples are independent. So what happens if we take a moving average
of the series? Define a new random number w; by
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Below we compute this new series for £ = 10 and plot the autocorrelation.

moving_avg_len = 10



W = [(1.0/moving_avg_len)*sum(U[i:i+moving_avg_len])
for i in range(len(U) - moving_avg_len)]
p = list_plot(W, plotjoined = True, marker = ’o’, figsize = 5,

rgbcolor = ’black’)
p.save(filename = "W_plot.pdf", ymin = 0)
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Figure 3: Sequence w;.

Figure 3 shows oscillatory motion. This is because two points that are
Jj points apart share k& — j points of the original series (if j < k) and 0
otherwise. We see this in the autocorrelation, calculated as follows, and
shown in Figure 4.

W_ac = [autocorrelation(W, t) for t in range(t_max)]

If we repeat the taking of a moving average then we see (Figure 5) what
appears to be very regular behaviour:
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Figure 4: Autocorrelation of the sequence w;.

Wl = [(1.0/moving_avg_len)*sum(W[i:i+moving_avg_len])
for i in range(len(W) - moving_avg_len)]

W2 = [(1.0/moving_avg_len)*sum(W1l[i:i+moving_avg_len])
for i in range(len(Wl) - moving_avg_len)]

W3 = [(1.0/moving_avg_len)*sum(W2[i:i+moving_avg_len])
for i in range(len(W2) - moving_avg_len)]

W3_plot = list_plot(W3, plotjoined = True, marker = ’o’,
figsize = 5, rgbcolor = ’black’)
W3_plot.save("W3_plot.pdf", ymin = 0)

It is interesting (but not surprising?) that the points in Figure 5 stay
near the mean of the original, 4.39600000000000.
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Figure 5: Sequence from four moving averages.
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