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1. INnTRODUOCTION

In a previous joint paper (‘The dissection of rectangles into S(iuares ’, by R. L. Brooks,
C. A. B.Smith, A. H. Stone and W. T. Tutte, Duke Math. J.7 (1940), 312-40), hereafter

_ referred to as (A) for brevity, it was shown that it is possible to dissect a, square into

smaller unequal squares in an infinite number of ways. The basis of the theory was the
association with any rectangle or square dissected into squares of an electrical network
obeying Kirchhoff’s laws. The present paper is concerned with the similar problem of
dissecting a figure into equilateral triangles. We make use of an analogue of the
electrical network in which the ‘currents’ obey laws similar to but not identical with
those of Kirchhoff. As a generalization of topological duality in the sphere we find that
these networks occur in triplets of ‘trial networks’ N, N2, N3. We find that it is
impossible to dissect a triangle into unequal equilateral triangles but that a dissection
is possible into triangles and rhombuses 86 that no two of these figures have equal sides.
Most of the theorems of paper (A) are special cases of those proved below. .

We define a triangulation of order n of any region and in particular of an equilateral
triangle A as a dissection of the region into # > 1 closed equilateral trlangles B, E,,...
E,, called the elements of the triangulation, which between them completely fill the
region and which do not overlap-except at their boundaries. It is evident that in any
such dissection of A the elements fall into two mutually exclusive classes, those placed

. similarly to A which will be called positive elements, and those placed similarly to the

triangle formed by rotating A through an angle 77 which will be called negative elements.
The size z, of the element B, is defined to be the length of the side of H, taken with a
positive or negative sign according as E, is a positive or a negative element. The tri-

+ angulation of A is called perfect if no two elements have the same size. Thus a perfect
triangulation has at most two elements with a given length of side, and if it has two

then one is a positive and the other a negative element.

In §2 we describe.a graphical representation M (7T') of a tna.ngulatlon T of A. We call
M (T) the bicubical map of T. From M(T) we get three networks N*(T'), N*(T'), N3(T).
We show that with each of these three networks.there is associated a set of equations,
analogous to Kirchhoff’s laws, connecting the sizes of the elements of 7'. One result
of this section is that in any triangulation of an equilateral triangle A there must be
two elements with a common side, and therefore with equal and opposite sizes. In
§3 we develop the theory of these equations and show that the sizes z, of the elements
B, must be commensurable. ,

In §4 we give an independent definition of a bicubical map, and show that from any

.such bicubical map we can derive a triangulation of an equilateral triangle.
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In § 5 we discuss triangulations of parallelograms, including as a special case squared
rectangles ((A), Introduction). § 6 generalizes the main duality theorem (3-25) of (A).

Most of the theorems proved below were discovered, or at least conjectured, during
the researches which led to the results of paper (A). Here they have been systematized
and missing proofs, such as that of § 6, supplied. I am indebted to the other authors
of (A) for permission to use joint results and for helpful criticism during the preparation
of the present paper. In particular I have to thank Dr C. A. B. Smith for the con-
ception of the bicubical map of a triangulation, and the definitions of a ‘perfect
triangulation’ and a ‘standardized matrix’.

2. TRIANGULATIONS OF TRIANGLES

2-1. Consider a triangulation 7' of order # of an equﬂateral triangle A with
elements £, K,, ..., K.

Let the sides of A be §;, S, and S,. Clearly any side of an element of T is parallel to
just one of these.

Let v be any vertex of an element E, of A, but not a vertex of A. Since E, occupies
an angle 17 at the vertex v we have two possibilities. Either six distinct elements have
a vertex at v (when v will be called a cross), or just three distinct elements have a vertex

at v, the remaining angle of 77 at v being occupied by another element or by the exterior
of A.

- 2:2. TuEOREM. For any triangulation T of an equilateral triangle A, we can find closed
straight segments p§ (0 =1,2,3;i=1,2,...,m,), where m,, my, mg are some positive
integers, such that (i) the union of the pg is the union of the sides of the E,, éach side of each
B, being contained in some pg, (ii) p7 is parallel to the side S, of A, (iii) two distinct segments

" p7 have at most one point in common, and (iv) if v is a vertex of E, and not a vertex of A,

then v is an interior point of just one of the segments pg. (Aninterior point of p7 is a point
contained in, and not an end-point of, pg.)

To prove this we consider the union U, of those sides of elements of 7' which are

- parallel to S,. Its connected components are closed straight segments. Letus try taking

these as the segments p7 for each value of o. The segments p7 thus defined evidently
satisfy conditions (i) to (iv) save only that (iv) fails at each cross; & cross is an interior
point of just three of these segments. Clearly, by subdividing at each cross any two

of the segments intersecting there we obtain a set of segments satisfying the conditions
of the theorem.

2-3. Suppose that we have a set of segments pJ sa.tisfyingl the conditions of §2-2.

- Then if vis a vertex of an element of 7' but not a vertex of A, there is a unique segment

7 having v as an interior point (§2-2 (iv)). We call this the bisector B(v) of v. It defines
two angles of 77 at v, and each of these angles contains either 0 or 8 elements of 7' which
have v as a vertex. We call a set of three eléments occupying either of these angles a

* triplet of T with focus v. The number of triplets of which v is a focus is thus two if v is |

a cross, and one otherwise. It is convenient to extend this definition by calling the set
of three elements of 7' which meet vertices of A a triplet (the exterior triplet of A).
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A is regarded as imbedded in the closed plane Z2, and the point J at infinity is ca]led
the focus of this special triplet.

We suppose the triplets enumerated as F,, F, ..., F,_;, the exterior triplet being £,

With these definitions it is clear that each element of T belongs to just three triplets,
one for each vertex. p

We can represent the relations between the elements and triplets of 7' by a linear
graph G(T'). G(T') has n+q vertices, e, ¢,, ...,e, corresponding to the elements, and
Jo f1s -++» fy—y corresponding to the triplets. Two vertices are joined by at most one edge,
and each edge has one end an e, and the other an f,. There i isan edge j ]ommg e, and f,
© if and only if B, belongs to the triplet F,.

We see that each vertex of G(7') is incident with just three edges. This property is
expressed by saying that G(T') is cubical. Moreover, the vertices of G(7') fall into two
exhaustive and mutually ‘exclusive classes E and F—the set of the e, and the set of the
fs respectively—such that each edge is incident with one member of each class. We
express both propertles by saying that G(T') is bicubical.

Since each edge joins two vertices, one of class E and the other of class F, and each
vertex is incident with just three edges, we see that n, the number of members of E
must equal ¢, the number of members of F. .

| n=gq. - o (1)

2-4. TarEOREM. G(T') can be realized in the closed plane.

Take e, to be the centre of E,. Make straight joins from e, to each of the vertices of
E, (foreachr). A straaght join to a vertex of A is to be continued through that vertex
to the point J at infinity. :

By this construction each element, and also the extemor of A, is divided into three
3-sided regions. We call these regions subelements of T'.

Consider the linear graph whose edges are these straight joins and whose vertices
are the e, and the foci of the triplets. This would be a realization of G(7') in Z2? were it
not that each cross X is the focus of two triplets. As the two triplets are separated at
X by the bisector B(X) we can ‘pull apart’ the representative points of the two triplets
- at each cross and so obtain a realization of G(7') in Z2. More precisely we choose some
positive ¢ less than half the length of the side of the smallest element of 7', and at each
cross X replace the part of the linear: graph within ¢ of X by the two arcs of the circle
of radius ¢ and centre X for which the radius makes an angle not less than 37 with the

bisector of X. The midpoints of these two circular arcs are taken as the representative
points f; corresponding to the two triplets.

2-5.” Let PZ be a closed polygon coflstructed from the union of those (closed) sub-
elements of 7' which have a side in pf by adding every point of Z2 distant not more than
" ¢ from any cross which is an interior point of p¢ and subtracting every point which is
distant less than e from any cross which is an end-point of p9. ,
Tt is easily verified that P¢ is simply connected (its boundary being a simple closed
curve), that no two of the P{ have an interior point in common, and that the realization
of G(T') obtained in §2-4 contains the boundary, but no interior point of each PJ.
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the polygons P7 and whose 1-section (linear graph constituted by its edges and vertices)
is our realization of G(7'). We call this 2-complex the bicubical map M (T) of T.

2-6. The index o will be called the colour of P}. Since E, has a side parallel to each
S, it follows from § 2-6 that e, is incident with just one P{ of each colour . Consequently
each edge of M(T) is incident with two 2-cells of different colours. For each edge is
incident with a member of E. The remaining colour will be called the colour of the edge.

Since each edge is incident with & member of F it follows further that the three 2-cells

incident with any member of F have three different colours. We denote by K(o) the
class of the 2-cells of colour o, and by L(o) the class of the edges of colour o. By the

above considerations the three classes K (o) are exhaustive and mutually exclusive,
and so are the three classes L(o). '

2-7. By the construction of § 2-5 it follows that e, is incident with P? if and only if
E, has a side contained in pJ. Also f,is incident with PJ if and only if the focus of Fis
in p7 and also p? contains a side of some member of ., save only that f, is incident with
each 2-cell of M correspondmg to a side S, of A, Henceforth we shall assume that
S, is pf.

We denote by W, the yertex of A opposite S,.

TarorREM. Each (closed) edge of M(T) meets the boundaries of just four 2-cells.

Let L be a 1-cell of M(T) with end-points e,, f;, and colour o. Let P, Pf be the
2-cells of colour o incident with e, and f, respectively. Then they are distinct, for the
element E, (by the above considerations) has one side in p¢ and the opposite vertex
in pf except when p% is S, and Z, has a vertex at W,.T

So, besides the boundaries of its two incident 2-cells, L meets the boundaries of just
two other 2-cells. -

2-8. We suppose henceforth that the edges of M(7') are-oriented, with positive ends

e, and negative ends fo- We say that an edge is directed from its positive end, and fo its
negative end.

2-9. For each ¢ (1 <4< my) let us identify all the points of the closed 2-cell Pi.
This process does not identify the end-points of any edge of M (7') not incident with
a member of K(1). For by §2-7 the positive end of such an edge would represent an
element of 7' having one side and also the opposite vertex in the same segment 3, or
else the edge would represent an element of 7' with one side in S; and having the
opposite vertex of A as a vertex, which is impossible since n> 1,
The result of the identifications is thus clearly a cellular 2 complex N(T') which is
a dissection of a space homoeomorphic to Z2. Its vertices are the P}. Its 2-cells are
- the P%and the P%. Its edges are the edges of L(1). The edges and 2-cells have the same
mutual incidence relations as they have in M (T'), and any one of them is incident with
P} if and only if it is incident in M (T') with an edge or vertex incident with Pk
In a similar way, by operating on the 2-cells P% or P} instead of the P} we obtain
2-complexes N2(1') and N3(T) respectively. We say that the three No(T') constitute

T In the latter case py and pg are distinct because, since n> 1, K, is not the whole of A.
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a set of #rial 2-complexes provided that their edges are oriented according to the -

+ following rule; the positive (negative) end of an edge L of N°(T), when regarded as a.closed,

2-cell of M(T'), contains the positive (negative) end of the edge in M (T).

We shall see later that triality can be regarded as a generalization of topological
duality in the 2-sphere. ' , :

We have seen in § 2-7 that in M (7) the vertex e, is incident'with just one edge of each
colour. We shall denote the edge of colour o incident with e, by L7. Of the three edges
incident with e, only L¢ is an edge of N 7(T). Thus to each element E, of 7' there
corresponds a unique edge LZ of No(T). ~ ‘ '

- The edges of No(T') incident with the vertex P73, taken in their cyclic order at Pg,
are directed alternately to and from P3. This follows from the fact that members of
E and F must alternate in the bour_ld&rjr of the 2-cell PFof M(T), since Q(T)is bicubical
(§2-3). n ‘ _

2:10. We define a matrix {c%} as follows:

If r&s, then —c% is the number of edges of No(T) directed from P? to P7, and
¢ is the number of edges of No(7') directed from P77. We note that

' 2¢=0 and 3 ¢% =0. a ‘ (2)

S r - )

The first of these follows immediately from the definition of cZ,. For the proof of the
second we -require also the result that the total number of edges directed to a given
vertex of N7(T') is equal to the total number directed from that vertex (since edges
of the two kinds alternate at the vertex). '

2-11. Let W, be the vertex of A opposite S,. We can suppose that the element of T

which meets W, is B,. Let X, denote the side of &, opposite 7.

It is evident that if p¢ is not S,, the sum of the z, (see Introduction) taken over all
E, having a side in p¢ is zero. But if 29 is 8, the sum is the length X of the side of A.
- Putting this in terms of M (7T') we find that the sum of the z, taken over all ¢, incident
with a given P7is 0 or X according as P7 is not or is incident with the special vertex f,.
" Let V¢ denote 2/4/3 times the distance of p¢ from S, measured positively towards
W,. Then if B, has a side in p? and the opposite vertex in pZ we have . '

o 2y = VS— V7. | (3)
This equation applies for each &, except B, (W_is the ohly vertex of an element of .7’
not in a pf, for a fixed o). : S
Using.the above result for M(7'), arid (2) and (3), we find that

a o o\ o o _.- O (lf.pg iS l'J.Ot ’S’o-)a ’

' %CTS(VS V?‘) - % C?‘s VS - {__X (ifpg- iS 'Sg-): : : (4)
provided that pg is not SL. . ) ‘
If p7 is %, we find by analogous considerations that

SenVi=2,~(0—(X—u,)) = X. (5)

T For r#s, ¢,, is thus minus the number of elements of T' with bases on p? and vertices

on pJ (except that for the purposes of this enumeration the element having a vertex at W, is
deemed to have it on S,). ' :
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Equations (4) and (5) constitute the set of linear equations associated with Nv(T)
whieh is referred to in the introduction. It will be shown in the next section that when
X is given they uniquely determine the differences of the V7 (for any fixed o) and so
also the z,.

2-12. THEOREM. In any triangulation T of a triangle A some two elements have g
side im common. ’ ‘ ‘

Let oy, oty and a, denote the number of vertices, edges and 2-cells of M (7') respec-
tively. By §2-3 we have o, = 2n and o, = 3n. Hence by the Euler polyhedron formula
it follows that oy = n + 2. } . -

Let ¢,, be the number of 2-cells having m sides. Since members of E and members
of F alternate in the boundary of any 2-cell of M(T), c,, vanishes for all odd m. Hence

.n+2=62+04+66+...=a2
“and 3n = $(205+dcy+6cg+...) = 0.
Hence ~ , - 6=2¢,+c,—cg—200—3Cp—.... (6)

But by the theorem of § 2-7, ¢, = 0, for a side of a 2-sided 2-cell could not satisfy that
theorem. Hence by (6), ¢,>6. Since fo 1s incident with just three 2-cells of M (1), it
follows that there is a 2-cell PZ of M (T ) not incident with f; and having just four sides.
Then P7 is incident with just two of the e,. Since p? is not S, (P9 is not incident with
Jo) it follows that p? is a side of each of the two corresponding elements Z,.

3. THE METRICAL PROPERTIES OF TRIANGULATIONS‘

3'1. Let N be an oriented network such that each edge is incident with two distinet
vertices. We suppose that with each edge there is associated a real number called the
conductance of the edge. ' : . '

We suppose the vertices of N to be p in number, and enumerate them as P, B, ..., F,

Let —c,; (r=s) be the sum of the conductances of all the edges which are directed
from F, and to P, and let ¢,, be the sum of the conductances of the edges directed from

B. Clearly ‘ > Cps = 0. ' (7)

From (7) we can readily show that the cofactors of the elements of any particular
row of the matrix {c,;} are all equal. We call their common value for the rth row the
complexity of N at P. and denote it by C,(N) or simply by C..

When IV has only one vertex P, we write C;(N) = 1. :

If it is also true that ' e, =0, _ (8)

- we can likewise deduce that the cofactors of the elements of any particular column

of {c,;} are all equal, whence it follows that C, has the same value O(N) = C say for
each r. We then call C(IV) the complexity of N. -

Equation (8) is not true in general. We note, however, that it is true for the matrix
obtained from {c,;} by multiplying the elements of each row by the corresponding C..
The sum of the elements of any column of this matrix is equal to the determinant of
{¢s} which, by (7), is 0. We call this matrix the stondardized matriz of N. '
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3-2. The second cofactor obtained by taking the cofactor of ¢, in the cofactor of

- onin{o} (for 7+, t+u) is denoted by (rs. fu). We also write

(rr.tu) = (rs.it) = 0 (all r,s,t,u). - (9)
From this definition we have ' . |
(rs.tu) = —(sr.tu) = — (rs.ut). | - (10)
~ 3-3. Consider the linear equations ] '
X enly = 6, H,— &, H, ' - (1D
u : 4

in the unknowns 7, (§,, = 1, 8;; = Qif ¢=4). We suppose r=s. With respect to this
set of equations we call P. the positive and F, the negative pole of N. A necessary and
sufficient condition for the consistency of equations (11) is that {¢,} and the augmented
matrix formed by adding to it a column whose tth element is 8y H,— 0, H, shall have
the same rank+. For this it is necessary that the determinant of each. square submatrix
~of order p of the augmented matrix shall vanish, i.e. that -

H,C, = A, S a2

If (12) is true, and if also C,= 0, the equations will be consistent, {c,,} and the aug-
mented matrix having the same rank p— 1. If this is the case we can ignore the sth
equation, which will be dependent upon the others. Multiplying each of equations (11)
other than the sth by —1 and adding to equation (7) multiplied by an arbitrarily fixed
¥, we obtain a set, of p — 1 independent linear equations in the p— 1 unknowns V,—7,,
where ¢ is fixed and u =+ The determinant D of this set of equations is the comple-
mentary minor of cy, whose valueis (—1)s+(,+0. It follows that the »—1 equations
have a unique solution. In this solution V;—V, is the cofactor of ¢, in the determinant
D, multiplied by — H, and divided by (— 1)s+ C,. That is -

it T | |
| V-V, = 9 (s7.tu) = a (rs.tu), (13)
by (10). ’ :
From (13) we deduce the following polynomial identity (in the variables c;):
| (rs.tu)+ (rs.uv) = (rs.tw). ) . (14)

- From the analogous result for the transpose of the standardized matrix of N we have
also a polynomial identity

Colgr - tu) + Oy(rs .'tu) = C.(gs.tu). (15)

It is of interest to compare these results with those of §2:2 of (A). The fundamental
distinction is that in (A) the matrix {c,} is symmetrical. Because of this we have for
(A) the result [rs.u] = [tu.rs], but in the present theory it is not in general true that
(rs.tu) = (fu.rs). The theory reduces to that of (A) when we postulate that {c,.} is
symmetrical, and that two oriented edges of the same conductance ¢ and with the same
end-points but with opposite orientations are equivalent to a ‘wire’ of conductance c.
The interpretation of the complexity of an electrical network in terms of subtrees ((A),
§(3-1)) also has a’simple generalization in the present theory, as we now proceed to show.

'+ A. C. Aitken, Determinants and matrices (Edinburgh, 1939), pp. 69-71.
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3-4. Asin (A) we define a subnefwork of N as a network consisting of all the vertices
and some subset of the edges of V. A subtree of N is a subnetwork which is a tree, i.e.
which is connected and which contains no simple closed curve. If the number of edges
of the subtree 7' of N which have the vertex P, as positive (negative) end is 0 for a
particular value k& of » and 1 for every other value of 7, then 7' is said to converge to
(diverge from) P,.

We enumerate the subtrees of N which converge to the vertex P,, and denote by
I1,; the product of the conductances of the edges of the jth of them. We write

UN) = 210, A (16)

3-5. Suppose that NV has at least one edge and at least three vertices. Let P; and P,
be the positive and negative ends respectively of some edge L, of conductance ¢. Let
N’ be derived from N by suppressing L and let N” be derived from N by suppressing
all edges joining Pyand B, and then identifying P, and P,. From the definition of C\(IV)

we have C(N") = (jk . jk) - (17)
and Cu(N') = Co(IN) — cC(N™), ' (18)

where Cr(IV") is the complexity of N” at the vertex obtained by identifying P; and P,c
It is clear that with an analogous interpretation of U (N”) we have also

U(N') = Up(N) — cU,(N"). ' T (19)

3-6. THEOREM.  Cy(IN) = (). (20)

If N has just one vertex B, Ci(N) = 1 (§3-1), but U,(IV) is undefined. We define
Uy(IV) to be 1 so that the theorem may be true in this case.

If N has just two vertices P, and B, we have Cy(N) = U(N) = —cy,. It is now only
necessary to consider the case in which N has at least three vertices.

If P, is not the negative end of any edge we have at once U,(N) = 0. Moreover,
with the possible exception of ¢y, the kth column of {c,.} consists entirely of 0’s, so that
Ci(NV), which can be defined as the cofactor of the kth element of another column, is 0.
So the theorem is true in this case.

If B, is {he negative end of an edge L, we define N’ and N” as in §3-5. By (18)and (19)
the theorem will be true for N at P, if it is trué for N" and N” at P,. As N’ and N” each

have fewer edges than N, the general result follows by induction over the number of
edges of N,

3-7. We say that the network IV is simple if the conductance of each of its edges is
1 and if also each vertex has just as many edges directed to it as directed from it. Thus
any simple N satisfies (8) and so has the same complexity €' = C(N) at each vertex
(by §3-1). : ,
3-8. TuroreM. If N is simple and connected, and has at least two 'uermces and if P,
18 any one of uts vertices, then N has a subt9 ee which converges to P,

Lemma. If F,, P, are any two distinct vertices of N, then P, and P, can be joined in N by

a simple arc A such that each vertex of A other than P, is the positive end of just one edge in A.

We call such an arc A a directed arc from P, to P,.
If the lemma is true for a particular pmr E., F,, we say that F, is accesszble from P,
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Let X be the set of all vertices of N accessible from PT,' together with P, itself, and let
Y be the set of all other vertices of N. If ¥ is not null, then since N is connected there
must be at least one edge having one end in X and the other in ¥, Clearly theend in X -
must be the negative end for each such edge (by the definitions of X and Y). It follows
that the number of edges whose positive end is in ¥ exceeds the number whose negative
end is in ¥. Hence some vertex of Y is the positive end of more edges than have it as
negative end, contrary to the definition of a simple network. Hence ¥ must be null
and so the lemma is true. : .

Let the vertices of ¥ other than B, be enumerated as Q;, Q,, ..., Qp_y- Let Ay, A, ...,
A,_4 be directed arcs in NV such that A, is directed from Qs to B,. The existence of such
arcs follows from the lemma,. ’ ‘

We define &4, Q,, ..., G,y successively as follows: Gy = A;. G, 41 ‘(0\< s<p—1) is
the unien of G, and that part of A,,; which extends from Qs.1 to the first vertex of
Agi1, reckoning from Q. ,, which is in G,. ’

From this definition we find, by considering each G in turn, that G, is a tree for each s.
As @, contains each vertex of IV it is therefore a subtree of N. Also each vertex of G,
other than P, is the positive end of just one edge of G, and P is not the positive end
of any edge of G,. Hence by §3-4, G, converges to P,. '

CoroLtawry. If N is simple and connected, then C(N )>0.

This follows from § 3-6. :

3-9. From the above corollary, it follows that for simple networks we can replace
(15) by (gr.tu)+ (rs.tu) = (gs.tu) (21)

=

in closer analogy with the equations of (A). 4 .
If N is simple we call the oriented network obtained from it by reversing the orienta-
tion of each edge the reversal of N, and denote it by N*. Clearly N* is simple.
If we distinguish quantities referring to N* by an asterisk we have ¢}, = c,,, so that
the matrix {c}} is the transpose of {¢,.}. From this it follows that ‘

C(V*) = O() » x (22)

and / . (rs . tu)* = (tu.rs). . S (23)

The reversal has no analogy in the theory of (A).

3-10. Consider the 2-complex N(T') of §2-9. We define the conductance of each of
its edges to be 1. Then the 1-section of No(T') (i.e. the network defined by its edges and
vertices) is simple, by §2:9. The quantity c,, for this network is clearly the quantity
denoted in § 2 by cZ.. _ - '

Suppose that S, is pJ and that _is p7. Then by applying § 3-3 to equations (4) we -
deduce that - X _
Vi—-Vi= I (bw.rs), - (24)

where C7 is the complexity of the 1-section of No(T').
It is convenient to measure the size of A in such units that X = C°. We then have

.

» VIi—-Vi= (tu.rs). (25)
We call the corresponding values of the , the full sizes of the elements of T with
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respect to o. It will, however, be shown later that C* = C2% = (3, so that the fuil sizes

are in fact independent of o. The full sizes of the elements of A are, by (25), integers.
We thus have the

TuarorEM. The length of the side of A, and the sizes of the elements of T' are commen-
surable.

4. CONSTRUCTION OF A TRIANGULATION FROM A BICUBICAL MAP

4-1. A bicubical map M may be defined as follows. I is a finite cellular 2-complex
which is a dissection of Z2, and which satisfies the following conditions: "
(i) Bach vertex is incident with just three 2-cells and therefore with just three
edges, and ’ :
(ii) The vertices of M fall into two mutually exclusive classes E and F such that
each edge is incident with just one member of each class.
The bicubical map will be called admissible if it also satisfies the condition:
(iii) Each (closed) edge meets the boundaries of just four 2-cells. ‘
Since the. 2-cells are simple polygons it follows that the 1-section of M is connected.
The map M(T) of§2-is an admissible bicubical map, by §2-7.

4-2. A 3-colouring of a bicubical map M is a partitioning of its 2-cells among three

mutually exclusive classes, called colour-classes, so that no two members of the same -

colour-class have a side in common. v

TarorEM. A bicubical map M has just one 3-colouring. :

Tet the edges of M be oriented so that the positive end of each is in E, and the 2-cells
<o that the 2-chain in which each coefficient is unity is a 2-cycle{. Then the 1-chain on
M in which the coefficient of each edge is the residue 1 mod 3 is clearly a 1-cycle, K say.
Since M is a 2-sphere this 1-cycle bounds a 2-chain K* over the additive group of
~ residues modulo 3 on M. We-classify the 2-cells of M according to their coefficients
in K?. We thus obtain a 3-colouring of M, for if the two 2-cells incident with any edge
have the same coefficient in K2, that edge must have coefficient 0 in K?.

Tt is easily seen that M has at most one 3-colouring. Forwhen the three 2-cellsincident
with any particular vertex are assigned to their colour-classes, the assignments at each
of the vertices joined to the first vertex by a single edge are determined.

4-3. Consider an admissible bicubical map M. We enumerate the members of E
as €y, €y, .., &, and the members of F as fo, f1, -+ f,,—1. That F has the same number of
members as E follows as in §2-3. We denote the three colour-classes of the bicubical
map by K(1), K(2), K(3) and enumerate the members of K(o) as P (i = 1,2, ...,my).
Tt will be seen that this notation agrees with that of § 2 for the bicubical maps considered
there. We define L(c) as in §2-6. We also define three 2-complexes N7(M) just as we
defined the No(T')in § 2:9. If I is the bicubical map of a triangulation 7' we can clearly
suppose the notation adjusted so that No(M) = N°(T).

+ For definitions of the terms of combinatorial topology used here, reference may be made
to Seifert and Threlfall, Lekrbuch der Topologie (Leipzig and Berlin, 1934), to Alexandroff
and Hopf, Topologie (Berlin, 1935), or to Lefschetz, Algebraic Topology, American Math. Soc.

Colloquium publications, vol. 27. Here we use the results of Chapter V, § 3 of the second of
these works.

Py S RS, S
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We suppose hereafter that the enumeration of the P is such that the member of
K(o) incident with f, is P¢ for each o
We define A to be 1 if P¢ is incident with ¢s and 0 otherwise.

4-4. Consider the equations

Z,/\gsys =0 (allr+1,allo). | (26)

M has 2n vertices, 3n edges and (n + 2) 2-cells (as in§2-12). Hence ‘the equatlons (26)
are n— 1 in number and involve just 7 unknowns y,. Since the equations are linear and
homogeneous it follows that they have a solution in which the y, are real and not all
zero. Henceforth by ‘the y,” we shall mean a particular solution of this kind. If
M = M(T) for some triangulation 7' we get such a solutlon by putting y, = z, (f,
representing the extenor triplet) by §2-11.

4:5. Wedenote by L¢ the edge of L(g") which is mmdent with e,, and by f7 the member
of F which is incident with Lg. Let

=xgrly - . 27)

g,

be any l-cycle on M with rational mteger coefficients g7 such that g2 = 0 when L¢ is
incident with f,. Orientation is defined as in § 4-2.

Then T bounds a 2-chain on M in which the coefficients of the P7 are all equal and
therefore (by adding a 2-cycle) a 2-chain
-SKPL . (28)

in which the h" are rational integers such that A7 = 0 whenever r = 1.
 TmmorEM. For each 1-cycle T of the form (27) '

> giw7y, =0, : (29)
o, T

where w is an imaginary cube root of unity.

By the foregoing considerations it will suffice to prove this for the casé in which T*
bounds a 2-cell P4 not incident with f,. For by (28) every I'! of the form (27) is a linear
combination of 1- cycles of this type.

Suppose then that I'! bounds P# and that the three colour-classes are K(p), K(6)
and K(¢). Without loss of generality we can suppose that g¢ is 0 when L is not incident

with P, and equal to +1 or — 1 when L¢ is incident with Py aecordmg asoisforg.
Then for I'* we have, by (26),

S L0y, = DX (e —wh)y, = (0 —wf) T A8y, = 0.
o, 7 .7 r

We have used the evident fact that edges of L(6) must alternate with edges of L(¢) in
the boundary of P.

The theorem follows.

4-6. Let 4 be any vertex of M other than f,. Then if B is any other vertex of M not -

fo we can, since M is connected, find a 1-chain ¥ whose combinatorial boundary is the
0-chain B—A. (We adopt the convention that the combinatorial boundary of L¢ is

J¥ —e,.) We may suppose that the edges of M incident with f, have zero coefficients

PSP 44,4 . _ 2T



474 W. T. TuTrTE

in ¥. We can arrange this if necessary by adding a suitable linear combination of the
boundaries of the P{. ' ‘
Suppose that Y =3 Ls.

Then we define the potential 7(B) of B by
7(B) = S0y, - (30)
By equation (29) it follows that the same value of 7(B) is obtained for each possible

Y- We note that 7(4) = 0. Evidently differences of potential are independent of the
choice of 4. ' '

Considering the edge L" we find that
f ‘r r) = yr! (31)

provided that f7 is not f,. If we try to calculate 7(f,) from the edge of L(o") which is

incident with f, by (81), we shall obtain a result 77(,), but this will not necessarily have
the same value for each o. For convenience we also write, for each r>0 and for each o,
m(f7) = m(f7)- '

4-7. Let the complex numbers 7(e,), 7°(f7) be represented by points in the Argand
plane. The four points 7(e,), 7(f3), 7*(f7) and 73( F2) coincide when y, = 0, but other-
wise the first is the centre of an equilateral triangle of which the other three are-the
vertices (by (31)). We denote this (closed) triangle by £, and call it an element.

The side of E, opposite 77(f9) is the set of points

(F+a) o+ (f7Hh) + (3 — ) 172 (f72), (32)
where o takes all real values in the range —} <« < }. Theindex o+ 1 or o'+ 2, if greater
than 38, is taken as equivalent to o — 2 or o'— 1 respectively. Now (32) is the set

( ) — lw‘Ty + (wo--i—l_wv-i-z) Yp Ol (33)
by (81). This is a segment of a straight line Y + (0t —w+?) B, where Y is a constant
and g is a real parameter. Let the value of § at any point £ in this line be denoted by
B(&). Then evidently Bl 1(fo+1)) — (ot for2)) = Yy (34)

Consider a particular 2-cell P§ of M. For each e, incident with P and such that
y,=+ 0, there is an element E,.. The sides of these E, opposite the vertices 77(f7) are
_parallel segments (by (33)). Moreover, they are in the same straight line and form a
connected set. For if f, is not incident with P§ each of these E, has a vertex in common
with each of its neighbours in the cyelic sequence corresponding to the sequence of the
e, with y, & 0 in the boundary of P§. Iff, is incident with P the same rule holds except
that the two E, corresponding to the two e, on either side of f, need not have a vertex
corresponding to f, in common. In either case the union of the sides of the E, opposﬂ:e
the vertices 77(f7) is connected, and sois a smgle straight segment; we denote it by pf.

The segments (0,w”) and (0, (w7+! —w’+?)) are perpendicular. Hence by (33) if 4,40
the point 77(e,) and therefore the element E, lies on one side or the other of pf according
as ¥, is posﬂnve or negative.

4-8. Let £ be any point in the Argand plane not contained in any of the segments
p%. Then we call the number of elements of which it is an interior point the degree of &.
We denote this by 8(£).
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The segmeits p% are finite in number; the 6omplement of their union must therefore
have only a finite number of components. Let these be enumerated as By, Bs, ..., B
say. All the points of any particular one of these evidently have the same degree.

' Consider a particular segment p? and let § be a point in p? which is not the intersec-

‘tion of any two of the pg. All but a finite number of the points of p2 must be of this form.
© By (33) pf is a segment of a straight line ¥ + (wP+l—wP*?) f, where Y is a constant
~and £ is a real parameter. -

Consider the cyclic sequence of the vertices in the boundary of P?. Since edges of
(p +1) alternate with edges of L(p+ 2) inthe boundary of P{, we can suppose that
- each of the e, incident with P2 is immediately succeeded in the cyclic sequence by
P+ and immediately preceded by f£+2.

Now ¢ is in & side of E, if and only if either:

| @) Alaeri(fE) > BE) > B2 (ff+2))

.or (i) Bl (fF) < BE) < Blart+>(f£4%)

E, is on one side or the other of p? according as ¥, is positive or negative (by §4-7),
that is, according as (i) or (ii) holds (by (34)). But it is clear that the number of pairs

f £+1, f£+2) satisfying (i) is equal to the number satisfying (ii), save possibly in the case

=1, when P2 is incident with f,. In that case if #({) lies between B(m?+( fo)) and
B(mP+2(f,)) the numbers of pairs satisfying (i) and (u) will differ by 1; otherwise they
will be equal.

Now for each o the segments pJ, p{+! have the point 77+%(fy) in common. For if e is
the vertex of E which is joined to f, by an edge of L(c +2), E has a side in each of p§
and p{+! (deﬁnition of the p%), and the vertex of E, opposite the third side is 77 +2(fo).
Hence either p, p? and p? contain the sides of an equilateral triangle A whose vertices
- are the points 777(f,), or else they have a common point. In the latter case we say that
A coincides with this point-and has side zero. :

“There must be some point 7 in a B, outside A such that d(y) = 0, since the outside of
A is infinite in area. It follows by the above considerations that d() = 0 when 7 is in
a B, outside A, and &(7) = 1 when 7 is in a B, inside A. Consequently the E, are the
elements of a triangulation 7' = 7'( M, f,) of the equilateral triangle A. (Since not all
the y, are zero, A cannot in fact have side 7ero.)

u

1@

4-9. The trla,ngulamon T is not essentially altered if we multiply each y, by —1.
For the effect of this on the potentials 77(B) is merely to multiply them by —1 (by (30)).
The new ¥, still satisfy (26). :

TarOREM. We can arrange, by multiplying all the y, by — 1, if necessary, that whenever
Y, =0, y, = ,/A/3, x, being the size of the element B,.

First, for any E, we find from (31) that

&, = + | 7(f)—m(feH) | = 2y, 07— | = +£4/3Y, .

For any particular element E, we arrange, by changing the sign of all the y, if neces-
sary, that z, and y, have the same sign.

But it is clear from (31) that all the positive elements have the same sign for Y, and
all the negative elements have the opposite sign for y,. Hence z, and y, now have the
same sign for each Z,.

We assume henceforth that , is made to satisfy this condltlon
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4-10. We define a maitrix ¢, for N°(I) just as we defined it for N°(T') in §2-10.
Equations (1) and (2) then hold for Nv(M).

We define V7 to be 2/,/3 times the distance of pf from pf measured positively towards
7TO"

I{O is easily verified, by an argument similar to that of §2- 11 that equations (4)
and (5) are also true for N°(M ). Applying the theory of§ 3 (asin § 3-10) we then find that
~the new quantities V¢ satisfy (24), Cv and (fu.rs) being defined in terms of N (M).
It follows that when X is given, the differences V7 — V{ and therefore the quantities g,
and so also the y, are fixed uniquely. Thus the solution of (26) for the y, is unique apart .
from multiplication by an arbitrary constant. ‘

When we measure the side of A in such units that X = (7, (24) reduces to (25), and

so the sizes of the elements become integers. We have still to prove that 07 is the same
for each o. ’

19

4-11. From a given bicubical map M we can in general derive several distinct
triangulations by taking different members of F as f,. Further, we can interchange the
members of E and F and then derive another set of triangulations. This operatlon |
evidently replaces N7(M) by its reversal.

It is therefore possible to determine all the triangulations of equilateral triangles
of a reasonably low order n by first listing the bicubical maps of 2n vertices and then
deriving from each the corresponding triangulations. Alternatively, we may prefer
to list the maps N°(M), characterized by the property that at each vertex edges directed
to that vertex alternate with edges directed from it. (It is easily verified that the
structure of No(}/) completely determines that of M.) This is'in closer analogy with
the methods of (A). Not all the triangulations so obtained will be of the nth order
necessarily, since in particular cases some of the y, may vanish, but any triangulation
T of the nth order will clearly be obtained from the corresponding map M (7). I find
that the two simplest perfect triangulations of equilateral triangles are those which

can be obtained from the parallelogram of Fig. 1 by erecting equilateral triangles on
two of its sides meeting at an acute anglef.

T In Figs. 1-3, any pair of elements having a common side is represented as a rhombus. The
numbers represent the lengths of the sides of the containing polygons, or of the dissected figure.
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5. TRIANGULATIONS OF PARALLELOGRAMS

. 5-1. The theory of triangulations of equilateral triangles is easily modified to cover
“that of triangulations of parallelograms (with angles of 47 and 47). I find that the
simplest perfect parallelogram of order n > 2 is that of Fig. 1. _

- Given any triangulation 7' of order n of a parallelogram II we can erect two new

elements &, ., E, .5 on two of its sides adjacent to an acute angle and so obtain a
- triangulation 7" of order n+ 2 of an equilateral triangle A. ‘

- For A we will define §; to be the side meeting both E,,., and B, . Then in M(T")
- the 2-cell @ corresponding to S; is a quadrilateral, for it is incident with epyande, o
but with no other member of E. One of the members of F incident with @ is the repre-
sentative vertex f, of the exterior triplet. _
Conversely, with the notation of § 4, suppose that Plis a 2-cell of M which isa quadri-
_lateral, and which is incident with f,. Let the three members of E joined to Jo by
" 1-simplexes be e,, ¢.; andse, ,, the two latter being incident with P!. Let the member
of K(2) on the opposite side of the quadrilateral P} to P2 be P%. Then the triangulation

T(M, fo), the side §; of A corresponding to P}, contains sides of just two elements
E,.,and B, , of T(M, f,). Suppressing these two elements we obtain a triangulation
of a parallelogram. The lengths of the sides of this parallelogram can be obtained in
terms of N2(1/) by using (24) with the interpretation of §4-10. If we adopt the con-
vention that the side of A is C? (the complexity of N2(M)), they are (15.1j) and
. C?2—(17.17). h

5-2. We can obtain another triangulation of a parallelogram (II* say) by inter-
- changing the members of the classes E and F and then taking the vertex denoted above
by e,,; to represent the exterior triplet of a corresponding triangulation of a triangle.
For the quadrilateral P represents a side of the triangulated triangle. In this operation
on M, N*(M) is replaced by its reversal. As before, if the side of the triangle is (C?)*,
the complexity of (N*(M))*, then the sides of IT* are (5. 1j)* and (C2)*— (15. 1j)*.
Thus the sides of IT* have the same lengths as those of IT (by (22) and (23)). In general,
therefore, given any triangulation of a parallelogram II, we can find another triangula-
tion of T of the same or smaller order. (Conceivably (rs.tu)* but not (rs.tu) may
vanish). Figs. 2 and 3 show two perfect triangulations related in this way. '

5:3. Evidently to any 2-cell of M which is a quadrilateral not incident with fo
~there corresponds a pair of elements with a common side in the triangulation

T(M, fo). : _ ' o

A case of particular interest arises when all the members of K(1) are quadrilaterals.
" Inany corresponding triangulated parallelogram the elements then fall into disjoint
pairs, each pair constituting a rhombus, and the shorter diagonals of the thombuses
are all parallel. Such a dissection of a parallelogram into rhombuses is clearly equivalent
to a dissection of a rectangle of the same side-lengths into squares. Conversely, by
‘shearing’ any squared rectangle we can obtain a dissection of a parallelogram into
rhombuses, and we can relate this to an admissible bicubical map M in which all the
- members of K(1) are quadrilaterals.
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It is easily verified that in this case N2() and N3(M ) correspond to dual c-netst
associated with the squared rectangle. A “wire’ in such a c-net is represented by two
oppositely directed edges with the same end-points and bounding a 2-sided 2-cell in
the corresponding map N2(M) or N3(M). This 2-cell is a- quadrilateral of K(1) in M.

3441
Fig. 3.

The quantities (rs.u) for N2(M) and N3(M) become identical with the transpedances
of the corresponding c-nets. ' ‘

This is why we describe the relationship between the three maps N°(M) as a general-
ization of topological duality on the sphere. Further justification is given by the
theorem of § 6. '

T (A) §(3-3).
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Dr C. A. B. Smith points out that the results of (A).enable us to prove the following

TerEOREM. 4 regular hexagon can be dissected into rhombuses, all of different sizes.

We first dissect the hexagon into three equal rhombuses by joining the centre to
alternate vertices. We obtain dissections of two of these by ‘shearing’ perfect squares.

If the two perfect squares are ‘totally different’ ((A), §(8-1)) the hexagon will now be
dissected into unequal thombuses (see (A), § (9-11)). ‘

CoroLLARY. There exists a perfect triangulation of a regular Ziexagon.

We dissect the hexagon into unequal rhombuses and then dissect each rhombus into
two equilateral triangles. One of these triangles will be a positive, the other a negative
element of the triangulation. '

6. TEE coMPLEXITIES (7

6-1. In §4 we showed that in the triangulation T'(M, f,) obtained from a bicubical
map M the sizes of the ‘elements all become integers when the side of the complete
" triangle is made equal to C7. This suggests that

, ct=0t=0% - (35)
The object of the present section is to prove (35) for every bicubical map M. Equation

(85) is the analogue of Theorem (3-25) of (A). This applies to dual undirected networks,
whereas (35) applies to trial directed ones.

6-2." In any bicubical map M members of the three clagses K (1), K(2) and' K (3) occur
in the same cyclic order at each member of E, and in the opposite cyclic order at each
member of F (with respect to a fixed positive sense of rotation in Z2). To prove this we
‘have only to observe that the orders at the two ends of any given edge must be opposite.

6-3. Select any particular member ¢, of E.

Suppose that there are given sets D!, D?, D? of edges of N*(M), N3(M) and N3(M)
respectively, together forming a set D such that (i) if P is any 2-cell of M not incident
with e, then just one member of D has P as its positive end in the appropriate N (M),
(ii) if P is any 2-cell of M incident with e,, then P is not the positive end of any member
of D in an No(M), (iii) each member of E other than e, is the positive end in M of just
. one member of D, and (iv) e, is not incident in M with any member of D.

We denote by R the subnetwork (see § 3-4) of the 1-section of N7(M) whose edges
are the members of D?. (We call it also a subnetwork of No(M).) '

TaEOREM. For each D satisfying the above conditions, and for each o, R is a subtree
of No(IL) converging to that vertex of N°(M ) which, as a 2-cell of M, is incident with e,

We suppose this vertex denoted by P¢ (contrary to our former convention).

Assume that for some o, R contains a simple closed curve I'.

Then each vertex of No(M) in T is the positive end of just one edge of I'. Otherwise
some vertex will be the positive end of two edges of T, contrary to (i) and (ii). Hence
by (ii) e, is not incident in M with any vertex.of I'.

Clearly by making joins inside some 2-cells of M (vertices of I') we can obtain a
simple closed curve T in M which contains every edge of M which is an edge of T and
otherwise lies entirely in the interiors of the 2-cells of K(c). By the preceding paragraph,

- : ?

-
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I'" does not contain ¢, and members of E and F occur alternately in I (i.e. the edges
of M in T are all directed the same way round I').

From this, with the help of (6:2) we deduce that the 2-cells of M contained in s
particular residual domain X of I'" and meeting I'" all belong to the same colour-class
K(p) say, which is not K(o). We will take X to be that residual domain of T which does
not contain e,

Now any edge of D? having its positive end (as an edge of N°(M)) contained in X
also has its negative end (as an edge of N#(J)) contained in X and is itself contained
in X. Otherwise it would have to be incident with a vertex of M contained in I'". This
vertex would have to belong to F (by (i) and (ii)), which would imply that some 2-cell
contained in X and not of colour o or p would meet I".

Each edge of M in I" is incident with a 2-cell contamed in X Hence X contains at

least one 2-cell of K(p).
. Let H be the part of N*(M) consisting of those edges and vertices which, as edges
and 2-cells of M, are contained in X. Let H, be obtained from H by suppressing all
the edges except those whose positive ends are in X and which belong to D?. By the
_preceding considerations H, is a network which with any vertex of N#(M) contains also
the edge, if any, of D? which has that vertex as positive end. Since ¢ is not in X, it
follows from (i) that H, contains precisely as many edges as vertices. So, using the
formulal P1(L) = po( L) = an( L) — og( L), - (89)
L being anly network, p,(L) the Betti number of dimension  of L, and o, (L) and ay( L)
the numbers of edges and vertices of L respectively, we see that p,(H;) = po(H,) >0,
so that H; must contain a simple closed curve. .

We thus deduce that, given any simple closed curve I in M containing one or more
edges of D7, for some particular o, and otherwise lying entirely in the interiors of the
2-cells-of K(o), we can find another such curve, corresponding to a different value
of o, which is separated from e, by I''. But this implies the existence of an infinity of
such curves, of which no two intersect. This contradicts our requirerment that the edges
of M are finite in number. , :

It follows that R° has no simple closed curve. It has just one more vertex than
edge (by (iii) and (iv)). Hence by (36), po(R°) = 1, and so R is connected. Hence R~

is a subtree of N°(J). Another application of (1) and (ii) shows that R~ converges
to PY.

6-4. THEOREM. Let R” be any subtree of N C’(M ) converging to P{. Tken there s just
one set D satisfying (1)—(iv) such that the edges belongmg to D are the edges of Re.

We define a sequence ¥(0), ¥ (1), Y(2), ... of sets of edges of M in the following way.

We first agree that any 2-cell P of M not incident with any member of E which is
the positive end of a member of Y (i) of the same colour as P shall be called i-unused.
Further we agree that any member of E which is incident with no member of ¥ (z) shall
be called i-unused. _ ‘ L

Given Y (¢) we choose, if possible, an i-unused 2-cell P, not incident with e,, which is

T The 2-cell is that one incident with the given edge of D? and not of colour o.
I Seifert and Threlfall, p. 87 (Example 3). :
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incident with just one i-unused member ¢,, of E. We adjoin to ¥ (:) the edge incident
with e,, and having the same colour as P. We take the resulting set as Y(i+1). We
define Y (0) to be the set of edges of R” and continue the above process until it ter-
minates, with ¥ (m)say. It follows from (i) that any set D which contains ¥(0) contains
also Y (m).

All the 0-unused, and therefore all the m-unused 2-cells of M not incident with e,
have colours other than ¢, since R is a subtree of ' o(M).

We can show that each m-unused member of E other than e, is incident with ]ust
two m-unused 2-cells. For let ¢; be any m-unused member of E other than ¢, (e, is
incident with three m-unused 2-cells). e; is incident with just two 2-cells, P, and P,
say, of colours other than o. If either of these is incident with e, it is m-unused by the

“construction. If one of them, P, say, is not incident with ¢, and not m-unused, then for
some ¢ < m it is t-unused but not (i + 1)-unused. Hence Y (i + 1) was formed from Y (:)
by adding an edge incident with an ¢-unused vertex e, incident with P, and not identical
with e;. Since ¢;is also i-tmused and 1n01dent with P, this was contrary to the conditions
of the construcmon ' ' |

‘ Construct a network in which the vertices are the m-unused members of E, together
with a set consisting of one interior point from each m-unused 2-cell other than Pg,

‘and in which the edges are simple arcs contained in the m-unused 2-cells. In each
m-unused 2-cell there is just one such arc for each incident m-unused member of E
joining this member of E to the chosen interior point. We can suppose that no two

. of these arcs in any one 2-cell intersect. Denote this network by G. Let G’ be obtained

from @ by suppressing all the isolated vertices. Let the number of m-unused vertices

of M be p, and the number of other vertices of @' be ¢. Then the number of edges of G'

is 2p. Also it is not less than 2(g—2)+2 = 2(¢— 1) with equality possible only when
no 2-cell incident with e, and not of colour ¢ is incident with any other m-unused
member of E and when also no m-unused 2-cell is incident with more than two
m-unused members of E. (The PY are the only 2-cells which can be at once m-unused

and incident with just one m- unused member of E;. otherwise we could construct a
Y(m+1).) Hence  pzq-— 1 (37)

with equahty only under the above conditions. A '

Now @' contains no simple closed curve. For if it contains a simple closed curve I,
each component of the complement of T' in Z2 contains a member of F, and therefore
a 2-cell of colour o. The union of the (open) 2-cells of K(c) and the closures in M of
the edges which are edges of R is a connected set (R is connected). But it does not:
meet I'. This is absurd since we have shown that it meets each component of the
complement of I'. Hence if the number of components of & is p(@), we can by
applying (36) to G deduce that

' 2p = (p+9)—po(F).

Hence py(G') = ¢—p <1 (by (37)). As po(@') must exceed 0, since G’ certainly contains
ey, it follows that p = g— 1. We have seen that this can be true only when e, together
with its two incident edges of G' constitutes a complete component of @'. Since

Po(@') = 1'this component is the whole of G'. Hence we have the result

M contains no m-unused member of B, other than e,
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Now if M has n members of E, the number of its 2-cells is n + 2, by (4-4) and (2-12).
It follows by the method of construction of ¥ (m) that the number of m-unused 2-cells
is (n+2) — (n—1) = 3. These three are of course those incident with e;,.

Tt follows that Y (m) satisfies the conditions (i)-(iv). But we have shown that any
set D satisfying (i)-(iv) and containing Y (0) contains also ¥ (m). The theorem follows.

6-5. By the results of §§ 6-3 and 6-4 we can arrange the subtrees of the maps Nv(M)
converging to the vertices P{ in disjoint sets of three so that just one member of each
set is a subtree of N#(M) for each p. The three members of any one of these sets define
a set D satisfying (i)—(iv). (35) follows immediately by § 3-6.

We have now obtained the following curious topological theorems. .

(i) The number of subtrees of an N?(M) converging to a fixed vertex is independent
of the particular vertex chosen. (§3-7.) ‘ '

(ii) The number of subtrees of an N°(M) converging to a given vertex is equal to
the number diverging from that vertex (by (22)). '

(iii) The numbers of subtrees of N*(M), N2(M ) and N3(M) converging to particular
vertices P, P2, P? respectively, are equal.
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